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Stickers with vivid and engaging expressions are becoming increasingly popular in online messaging apps,
and some works are dedicated to automatically select sticker response by matching the stickers image with
previous utterances. However, existing methods usually focus on measuring the matching degree between
the dialog context and sticker image, which ignores the user preference of using stickers. Hence, in this arti-
cle, we propose to recommend an appropriate sticker to user based on multi-turn dialog context and sticker
using history of user. Two main challenges are confronted in this task. One is to model the sticker preference
of user based on the previous sticker selection history. Another challenge is to jointly fuse the user preference
and the matching between dialog context and candidate sticker into final prediction making. To tackle these
challenges, we propose a Preference Enhanced Sticker Response Selector (PESRS) model. Specifically, PESRS first
employs a convolutional-based sticker image encoder and a self-attention-based multi-turn dialog encoder to
obtain the representation of stickers and utterances. Next, deep interaction network is proposed to conduct
deep matching between the sticker and each utterance. Then, we model the user preference by using the
recently selected stickers as input and use a key-value memory network to store the preference representa-
tion. PESRS then learns the short-term and long-term dependency between all interaction results by a fusion
network and dynamically fuses the user preference representation into the final sticker selection prediction.
Extensive experiments conducted on a large-scale real-world dialog dataset show that our model achieves
the state-of-the-art performance for all commonly used metrics. Experiments also verify the effectiveness of
each component of PESRS.
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1 INTRODUCTION

Images (a.k.a.,graphicons) are another important approach for expressing feelings and emotions in
addition to using text in communication. In mobile messaging apps, these images can generally be
classified into emojis and stickers. An emoji is a kind of small picture that is already stored in most
of the keyboard of the mobile operational systems, i.e., iOS or Android. Emojis are pre-designed by
the mobile phone vendor (now it is managed by standards organization) and the number of emoji
is limited, and users cannot design emojis by themselves. Different from the inflexible emojis, a
sticker is an image or graphicon essentially [14, 24, 32] that users can draw or modify images as
a sticker and upload it to the chatting app by themselves. The using of stickers on online chatting
usually brings diversity of expressing emotion. Emojis are sometimes used to help reinforce simple
emotions in a text message due to their small size, and their variety is limited. Stickers, however,
can be regarded as an alternative for text messages, which usually include cartoon characters and
are of high definition. They can express much more complex and vivid emotion than emojis. Most
messaging apps, such as WeChat, Telegram, WhatsApp, and Slack provide convenient ways for
users to download stickers for free or even share self-designed ones. We show a chat window
including stickers in Figure 1.
Stickers are becoming more and more popular in online chat. First, sending a sticker with a

single click is much more convenient than typing text on the 26-letter keyboard of a small mobile
phone screen. Second, there are many implicit or strong emotions that are difficult to express in
words but can be captured by stickers with vivid facial expressions and body language. However,
the large-scale use of stickers means that it is not always straightforward to think of the sticker
that best expresses one’s feeling according to the current chatting context. Users need to recall
all the stickers they have collected and selected the appropriate one, which is both difficult and
time-consuming.
Consequently, much research has focused on recommending appropriate emojis to users ac-

cording to the chatting context. Existing works such as Reference [79] are mostly based on emoji
recommendation, where they predict the probable emoji given the contextual information from
multi-turn dialog systems. In contrast, other works [6, 7] recommend emojis based on the text and
images posted by a user. As for sticker recommendation, existing works such as Reference [41]
and apps like Hike or QQ directly match the text typed by the user to the short text tag assigned
to each sticker. However, since there are lots of ways of expressing the same emotion, it is very
hard to capture all variants of an utterance as tags.
To overcome the drawbacks, we proposed a sticker response selector (SRS) for sticker selection

in our early work [22], where we addressed the task of sticker response selection in multi-turn
dialog. We focus on the two main challenges in this work: (1) Since existing image recognition
methods are mostly built with real-world images, how to capture the semantic meaning of
sticker is challenging. (2) Understanding multi-turn dialog history information is crucial for
sticker recommendation, and jointly modeling the candidate sticker with multi-turn dialog is
challenging. Herein, we propose a novel sticker recommendation model, namely SRS, for sticker
response selection in multi-turn dialog. Specifically, SRS first learns representations of dialog
context history using a self-attention mechanism and learns the sticker representation by a
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Fig. 1. An example of stickers in a multi-turn dialog. Sticker response selector automatically selects the

proper sticker based on multi-turn dialog history.

convolutional neural network (CNN). Next, SRS conducts deep matching between the sticker and
each utterance and produces the interaction results for every utterance. Finally, SRS employs a
fusion network that consists of a sub-network fusion recurrent neural network (RNN) and fusion
transformer to learn the short- and long-term dependency of the utterance interaction results.
The final matching score is calculated by an interaction function. To evaluate the performance of
our model, we propose a large number of multi-turn dialog datasets associated with stickers from
one of the popular messaging apps. Extensive experiments conducted on this dataset show that
SRS significantly outperforms the state-of-the-art baseline methods in commonly used metrics.
However, the user’s sticker selection depends not only on the matching degree between dialog

context and candidate sticker image but also on the user’s preference of using sticker. When users
decide to use a sticker as their response in multi-turn dialog, they may choose their favorite one
from all appropriate stickers as the final response. We assume that a user tends to use the recently
used sticker in their dialog history, and the recently used sticker can represent the user’s preference
of sticker selection. An example is shown in Figure 2. To verify this assumption, we retrieve 10
recently used stickers of each user and calculate the proportion of whether the currently used
sticker appeared in these 10 stickers. The result shows that 54.09% of the stickers exist in the
10 recently used sticker set. Hence, we reach to the conclusion that users have strong personal
preference when selecting the sticker as their response for the current dialog context. However,
in some cases, this also indicates a tendency to re-use stickers but not necessarily a preference.
Motivated by this observation, in this work, we take one step further and improve our previ-

ously proposed SRS framework with user preference modeling. Overall, we propose a novel sticker
recommendation model that considers the user preference, namely Preference Enhanced Sticker
Response Selector (PESRS). Specifically, PESRS first employs a convolutional network to extract
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Fig. 2. User’s history dialog context and the selected sticker. Four figures in the left history dialog context

and the selected sticker, and the right one the current dialog context with the user-selected sticker. A user

tends to use the same sticker when the dialog context is semantically similar.

features from the candidate stickers. Then, we retrieve the recent user sticker selections then a
user preference modeling module is employed to obtain a user preference representation. Next,
we conduct the deep matching between the candidate sticker and each utterance as the same as
SRS. Finally, we use a gated fusion method to combine the deep matching result and user prefer-
ence into final sticker prediction.
The key to the success of PESRS lies in how to design the user preference modeling module,

which should not only identify the user’s favorite sticker but also consider the current dialog con-
text. Motivated by this, we first propose an RNN-based position-aware sticker modeling module
that encodes the recently used stickers in chronological order. Then, we employ a key-value mem-
ory network to store these sticker representations as values and the corresponding dialog context
as keys. Finally, we use the current dialog context to query the key-value memory and obtain the
dynamic user preference of the current dialog context.
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We empirically compare PESRS and SRS on the public dataset1 proposed by our early work [22].
This is a large-scale real-world Chinese multi-turn dialog dataset, where dialog context is multiple
text utterances and the response is a sticker image. Experimental results show that on this dataset,
our newly proposed PESRS model can significantly outperform the existing methods. Particularly,
PESRS yields 4.8% and 7.1% improvement in terms of MAP and R10@1 compared with our early
work SRS. In addition to the comprehensive evaluation, we also evaluate our proposed user prefer-
ence memory by a fine-grained analysis. The analysis reveals how the model leverages the user’s
recent sticker selection history and provides us insights on why they can achieve big improvement
over state-of-the-art methods.
This work is a substantial extension of our previous work reported at WWW 2020. The exten-

sion in this article includes the user preference modeling framework for the existing methods, a
proposal of a new framework for sticker selection in the multi-turn dialog. Specifically, the con-
tributions of this work include the following:

• We propose a position-aware sticker modeling module that can model the user’s sticker
selection history.

• We propose a key-value memory network to store the user’s recently used stickers and its
corresponding dialog context.

• Finally, we use the current dialog context to query the key-value memory and obtain a user
preference representation and then fuse the user preference representation into final sticker
prediction dynamically.

• Experiments conducted on a large-scale real-world dataset show that our model outper-
forms all baselines, including state-of-the-art models. Experiments also verify the effective-
ness of each module in PESRS as well as its interpretability.

The rest of the article is organized as follows: We summarize related work in Section 2. Section 3
introduces the data collection method and some statistics of our proposedmulti-turn dialog sticker
selection dataset. We then formulate our research problem in Section 4 and elaborate our approach
in Section 5. Section 6 gives the details of our experimental setup, and Section 7 presents the
experimental results. Finally, Section 8 concludes the article.

2 RELATEDWORK

We outline related work on sticker recommendation, user modeling, visual question answering,
visual dialog, and multi-turn response selection.

2.1 Sticker and Emoji Recommendation

Most of the previous works emphasize the use of emojis instead of stickers. For example, Refer-
ences [6, 7] use a multimodal approach to recommend emojis based on the text and images in an
Instagram post. Reference [27] proposes a MultiLabel-RandomForest algorithm to predict emojis
based on the private instant messages. Reference [87] conducts emoji prediction on social media
text (e.g., Sina Weibo and Twitter), and they tackle this task as ranking among all emojis. The
total number of unique emojis in their dataset is 50, which is much smaller than the number of
stickers. What is more, emojis are limited in variety, while there exists an abundance of different
stickers. Reference [91] incorporates the emoji information into the dialog generation task, and
they use the emoji classification as an auxiliary task to facilitate the dialog generation to produce
utterance with proper emotion. The most similar work to ours is Reference [41], where they

1https://github.com/gsh199449/stickerchat.
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generate recommended stickers by first predicting the next message the user is likely to send in
the chat, and then substituting it with an appropriate sticker.
However, more often than not the implication of the stickers cannot be fully conveyed by text

and, in this article, we focus on directly generating sticker recommendations from dialog history.

2.2 User Modeling

User modeling [35, 57, 85, 93, 94] is a hot research topic, especially in recommendation tasks,
which models the preference of user based on the user history interaction data. Specifically, in the
e-commerce recommendation task [34, 42, 58], the user modeling systems use the purchase history
or click records to model the user’s intrinsic interest and temporal interest [56, 86]. Most of the
research typically utilizes user-item binary relations and assumes a flat preference distribution over
items for each user. They neglect the hierarchical discrimination between user intentions and user
preferences. Zhu et al. [92] propose a novel key-array memory network with user-intention-item
triadic relations, which takes both user intentions and preferences into account for the next-item
recommendation. As for the user modeling in the news recommendation task, there is much side
information that can be used to obtain a better user preference representation. Wu et al. [74]
propose a neural news recommendation approach that can exploit heterogeneous user behaviors,
including the search queries and the browsed webpages of the user.
However, to model the user preference of sticker selection, we should not only model the sticker

selection history, and the dialog context of each selected sticker should also be considered when
modeling the user preference.

2.3 Memory Networks

The memory network proposed by Sukhbaatar et al. [61] generally consists of two components.
The first one is a memory matrix to save information (i.e.,memory slots), and the second one is
a neural network to read/write the memory slots. The memory network has shown better per-
formance than traditional long-short term memory network in several tasks, such as question
answering [18, 48, 55, 61], machine translation [50], text summarization [9, 38], dialog system [11,
75], and recommendation [15, 69, 90]. The reason is that the memory network can store the infor-
mation in a long time range and has more memory storage units than LSTM that has the single
hidden state. Following the memory network, there are many variations of a memory network
that have been proposed, i.e., key-value memory network [51] and dynamic memory network [40,
80]. Our method is mainly based on the key-value memory network [51], which employs the user
history dialog contexts as the memory keys and the corresponding selected stickers as the mem-
ory values. However, there are two main differences between our PESRS model and the previous
key-value memory network. First, the user history data are in chronological order, and we should
consider the time information when storing them into the memory. To recommend more accurate
stickers, the model should not only consider the user preference information stored in the memory
but also incorporate the matching result between current dialog context and candidate stickers.
The second difference lies in that we propose a dynamic fusion layer that considers both the mem-
ory read output and the matching result of the current context. Compared with these methods, we
not only implement a key-value memory network but also provide a sticker selection framework
that could incorporate the user’s preference.

2.4 VisualQuestion Answering

Sticker recommendation involves the representation of and interaction between images and text,
which is related to the Visual Question Answering (VQA) task [19, 25, 46, 54, 59, 60, 68]. Specifi-
cally, VQA takes an image and a corresponding natural language question as input and outputs the
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answer. It is a classification problem in which candidate answers are restricted to the most com-
mon answers appearing in the dataset and requires deep analysis and understanding of images
and questions such as image recognition and object localization [26, 49, 76, 81]. Current models
can be classified into three main categories: early fusion models, later fusion models, and external
knowledge-basedmodels. One state-of-the-art VQAmodel is Reference [45], which proposes an ar-
chitecture, positional self-attention with co-attention, that does not require a RNN for video ques-
tion answering. Reference [29] proposes an image-question-answer synergistic network, where
candidate answers are coarsely scored according to their relevance to the image and question pair
in the first stage. Then, answers with a high probability of being correct are re-ranked by syner-
gizing with images and questions.
The difference between sticker selection and VQA task is that the sticker selection task focus

more on multi-turn multimodal interaction between stickers and utterances.

2.5 Visual Dialog

Visual dialog extends the single turn dialog task [28, 52, 63] in VQA to a multi-turn one, where
later questions may be related to former question–answer pairs. To solve this task, Reference [47]
transfers knowledge from a pre-trained discriminative network to a generative network with an
RNN encoder, using a perceptual loss. Reference [77] combines reinforcement learning and gen-
erative adversarial networks (GANs) to generate more humanlike responses to questions, where
the GAN helps overcome the relative paucity of training data and the tendency of the typical
maximum-likelihood-estimation-based approach to generate overly terse answers. Reference [36]
demonstrates a simple symmetric discriminative baseline that can be applied to both predicting
an answer as well as predicting a question in the visual dialog.
Unlike visual dialog tasks, in a sticker recommendation system, the candidates are stickers rather

than text.

2.6 Multi-turn Response Selection

Multi-turn response selection [8, 17, 44, 65, 82–84] takes a message and utterances in its previ-
ous turns as input and selects a response that is natural and relevant to the whole context. In
our task, we also need to take previous multi-turn dialog into consideration. Previous works in-
clude Reference [88], which uses an RNN to represent context and response and measures their
relevance. More recently, Reference [78] matches a response with each utterance in the context
on multiple levels of granularity, and the vectors are then combined through an RNN. The final
matching score is calculated by the hidden states of the RNN. Reference [89] extends this work by
considering the matching with dependency information. More recently, Reference [64] proposes a
multi-representation fusion network where the representations can be fused into matching at an
early stage, an intermediate stage, or at the last stage.
Traditional multi-turn response selection deals with pure natural language processing, while in

our task, we also need to obtain a deep understanding of images.

3 DATASET

In this section, we introduce our multi-turn dialog dataset with sticker as response in detail.

3.1 Data Collection

We collect the large-scale multi-turn dialog dataset with stickers from one of the most popular
messaging apps, Telegram.2 In this app, a large amount of sticker sets are published, and everyone

2https://telegram.org/.
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Table 1. Statistics of Response Selection Dataset

Train Valid Test
# context-stickers pairs 320,168 10,000 10,000
Avg. words of context utterance 7.54 7.50 7.42
Avg. users participate 5.81 5.81 5.79

Fig. 3. Statistics of dataset.

can use the sticker when chatting with a friend or in a chat group. Specifically, we select 20 public
chat groups consisting of active members, which are all open groups that everyone can join it
without any authorities. The chat history of these groups is collected along with the complete
sticker sets. These sticker sets include stickers with similar style. All stickers are resized to a
uniform size of 128 × 128 pixels. We use 20 utterances before the sticker response as the dialog
context, and then we filter out irrelevant utterance sentences, such as URL links and attached
files. Due to privacy concern, we also filter out user information and anonymize user IDs. To
construct negative samples, 9 stickers other than the ground-truth sticker are randomly sampled
from the sticker set. After pre-processing, there are 320,168 context–sticker pairs in the training
dataset, 10,000 pairs in the validation, and 10,000 pairs in test datasets, respectively. We make sure
that there is no overlap between these three datasets and there is no the same dialog context in
any two datasets. Two examples are shown in Figure 4. We publish this dataset to communities
to facilitate further research on dialog response selection task.

3.2 Statistics and Analysis

In total, there are 3,516 sets of sticker that contain 174,695 stickers. The average number of stickers
in a sticker set is 49.64. Each context includes 15.5 utterances on average. The average number of
users who participate in the dialog context over each dataset is shown in the third row of Table 1.
Since not all the users have history dialog data, we calculate the percentage of how many data

samples in our dataset have history data. There are 290,939 data samples in our training dataset
that have at lease one history sticker selection history, and the percentage is 88.12%. We set the
maximum of retrieved history data pair (consisting of dialog context and selected sticker) for one
data sample to 10, and the average of history length in our training dataset is 6.82. We also plot
the distribution of history length in Figure 3(a).

ACM Transactions on Information Systems, Vol. 39, No. 2, Article 12. Publication date: February 2021.
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Fig. 4. Example cases in the dataset with different similarity scores.

3.3 Sticker Similarity

Stickers in the same set always share a same style or contain the same cartoon characters. Intu-
itively, the more similar the candidate stickers are, the more difficult it is to choose the correct
sticker from candidates. In other words, the similarity between candidate stickers determines the
difficulty of the sticker selection task. To investigate the difficulty of this task, we calculate the av-
erage similarity of all the stickers in a specific sticker set by the Structural Similarity Index (SSIM)
metric [3, 71]. We first calculate the similarity between the ground-truth sticker and each neg-
ative sample and then average the similarity scores. The similarity distribution among test data
is shown in Figure 3(b), where the average similarity is 0.258. The examples in Figure 4 are also
used to illustrate the similarity of stickers more intuitively, where the left one has a relatively low
similarity score and the right one has a high similarity score.

4 PROBLEM FORMULATION

Before presenting our approach for sticker response selection in multi-turn dialog, we first intro-
duce our notations and key concepts. Table 2 lists the main notations we use.
Similarly to the multi-turn dialog response selection [78, 89], we assume that there is a multi-

turn dialog context s = {u1, . . . ,uTu } and a candidate sticker set C = {c1, . . . , cTc }, where ui repre-
sents the ith utterance in themulti-turn dialog. In the ith utteranceui = {x i1, . . . ,x iT i

x

}, x ij represents
the jth word in ui , and T i

x represents the total number of words in ui utterance. In dialog context
s , ci represents a sticker image with a binary label yi , indicating whether ci is an appropriate re-
sponse for s .Tu is the number of utterance in the dialog context, andTc is the number of candidate
stickers. For each candidate set, there is only one ground-truth sticker, and the remaining ones are
negative samples.
To model the user preference, we use Th history dialog contexts with user-selected sticker
{(ŝ1, ĉ1), . . . , (ŝTh , ĉTh )}, where ŝi denotes the ith history dialog context and ĉi denotes the user-
selected sticker at the ith history dialog context. In the remainer of the article, we use the word
current to denotes the dialog context s and sticker ci , which the model needs to predict the sticker
selection, and we use the word history to denote the dialog context and sticker that user has gen-
erated before. In the kth history, there is a dialog context ŝk = {ûki , . . . , ûkTu }, which contains up
to Tu utterances as the same as current dialog context s , and a user-selected sticker ĉk . For each
dialog history, we pad the dialog context where the number of utterances is less thanTu toTu . Our
goal is to learn a ranking model that can produce the correct ranking for each candidate sticker

ACM Transactions on Information Systems, Vol. 39, No. 2, Article 12. Publication date: February 2021.
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Table 2. Glossary

Symbol Description
s multi-turn dialog context
ui ith utterance in s
Tu number of utterances in dialog context
x ij jth word in ith utterance ui
T i
x number of words in the ith utterance

C candidate sticker set
ci ith candidate sticker in c
Tc number of stickers in candidate sticker set c
yi the selection label of ith sticker ci
ŝk kth multi-turn dialog context in history
ûki ith utterance in kth history context ŝk

x̂k,ij jth word in ith utterance ûki of kth history context

ĉk user-selected sticker of kth history
Th number of history dialog context and selected sticker

ci ; that is, can we select the correct sticker among all the other candidates? For the rest of the
article, we take the ith candidate sticker ci as an example to illustrate the details of our model and
omit the candidate index i for brevity. In some of the sticker selection scenarios, the stickers in the
preceding dialog context may affect the current decision of sticker selection. But in most cases,
the sticker selection is influenced by a few utterances before. Thus, in this article, we focus on
modeling the text utterances in dialog context. And we will consider the information provided by
the stickers in the preceding context in our future work.

5 PESRS MODEL

5.1 Overview

In this section, we propose our PESRS. An overview of PESRS is shown in Figure 5, which can be
split into five main parts as follows:

• Sticker encoder is a convolutional neural network–(CNN) based image encodingmodule that
learns a sticker representation.

• Utterance encoder is a self-attention mechanism-based module encoding each utterance ui
in the multi-turn dialog context s .

• User preference modeling module is a key-value memory network that stores the represen-
tation of history dialog context and corresponding selected sticker.

• Deep interaction networkmodule conducts deep matching between each sticker representa-
tion and each utterance, and outputs each interaction result.

• Fusion network learns the short-term dependency by the fusion RNN and the long-term
dependency by the fusion Transformer and finally outputs thematching score by combining
the current interaction results with user preference representation using a gated fusion
layer.

5.2 Sticker Encoder

Much research has been conducted to alleviate gradient vanishing [31] and reduce computational
costs [30] in imagemodeling tasks.We utilize one of thesemodels, i.e., the Inception-v3 [62] model,

ACM Transactions on Information Systems, Vol. 39, No. 2, Article 12. Publication date: February 2021.
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Fig. 5. Overview of PESRS. We divide our model into five ingredients: (1) Sticker encoder learns sticker rep-

resentation by a convolutional neural network; (2) Utterance encoder learns representation of each utterance

by self-attention-based Transformer; (3) User preference modeling module obtains the position-aware history

representations and store them into a key-value memory network; (4) Deep interaction network conducts

deep matching interaction between sticker representation and utterance representation in different levels

of granularity; and (5) Fusion network combines the long-term and short-term dependency feature between

interaction results produced by (4) and the user preference representation produced by (3) into final sticker

prediction layer.

rather than plain CNN to encode sticker image:

O,Oflat = Inception-v3(c ), (1)

where c is the sticker image. The sticker representation is O ∈ Rp×p×d , which conserves the two-
dimensional information of the sticker and will be used when associating stickers and utterances
in Section 5.4. We use the original image representation output of Inception-v3 Oflat ∈ Rd as an-
other sticker representation. Most imaging grounded tasks [37, 72, 73] employ the pre-trained
image encoding model to produce the image representation. However, existing pre-trained CNN
networks including Inception-v3 are mostly built on real-world photos. Thus, directly applying
the pre-trained networks on stickers cannot speed up the training process. In this dataset, sticker
author give each sticker c an emoji tag that denotes the general emotion of the sticker. Hereby,
we propose an auxiliary sticker classification task to help the model converge quickly, which uses
Oflat to predict which emoji is attached to the corresponding sticker. More specifically, we feed

ACM Transactions on Information Systems, Vol. 39, No. 2, Article 12. Publication date: February 2021.
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Oflat into a linear classification layer and then use the cross-entropy loss Ls as the loss function of
this classification task.

5.3 Utterance Encoder

To model the semantic meaning of the dialog context, we learn the representation of each utter-
ance ui . First, we use an embedding matrix e to map a one-hot representation of each word in
each utteranceui to a high-dimensional vector space. We also add the positional embedding to the
original word embedding, and we use the e (x ij ) to denote the embedding representation of word

x ij . The positional embedding is the same as Transformer [67]. From these embedding represen-
tations, we use the attentive module with positional encoding from Transformer [67] to model
the interactions between the words in an utterance. Attention mechanisms have become an inte-
gral part of compelling sequence modeling in various tasks [5, 16, 21, 45]. In our sticker selection
task, we also need to let words fully interact with each other words to model the dependencies of
words in the input sentence. The self-attentive module in the Transformer requires three inputs:
the query Q , the key K , and the value V . To obtain these three inputs, we use three linear layers
with different parameters to project the embedding of dialog context e (x ij ) into three spaces:

Q i
j = FC (e (x ij )), (2)

K i
j = FC (e (x ij )), (3)

V i
j = FC (e (x ij )). (4)

The self-attentive module then takes eachQ i
j to attend to K

i· and uses these attention distribution

α ij, · ∈ RT i
x as weights to gain the weighted sum of V i

j , as shown in Equation (6),

α ij,k =
exp
(
Q i
j · K i

k

)
∑T i

x

n=1 exp
(
Q i
j · K i

n

) , (5)

β ij =

T i
x∑

k=1

α ij,k ·V i
k , (6)

Next, we add the original word embedding e (x ij ) on β ij as the residential connection layer, shown
in Equation (7):

ĥij = Dropout
(
e (x ij ) + β

i
j

)
, (7)

where α i
j,k

denotes the attention weight between the jth word to the kth word in the ith utterance.

To prevent vanishing or exploding of gradients, a layer normalization operation [43] is also applied
on the output of the feed-forward layers with ReLU activation as shown in Equation (8):

hij = norm
(
max (0, ĥij ·W1 + b1) ·W2 + b2 + ĥ

i
j

)
, (8)

whereW1,W2,b1,b2 are all trainable parameters of the feed-forward layer. hij denotes the hidden
state of jth word for the ith utterance in the Transformer. We also employ the multi-head attention
in our model that conducts these operation multiple times and then concatenate the outputs as the
final representation. For brevity, we omit these multi-head operations in our equations.
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Fig. 6. Framework of deep interaction network.

5.4 Deep Interaction Network

Now that we obtain the representation of the sticker and each utterance, we can conduct a deep
matching between these components to model the bi-directional relationship between the words
in dialog context and the sticker patches. On one hand, there are some emotional words in dialog
context history that match the expression of the stickers such as “happy” or “sad.” On the other
hand, specific parts of the sticker can also match these corresponding words such as dancing limbs
or streaming eyes. Hence, we employ a bi-directional attention mechanism between a sticker and
each utterance, that is, from utterance to sticker and from sticker to utterance, to analyze the
cross-dependency between the two components. The interaction is illustrated in Figure 6.
We take the ith utterance as an example and omit the index i for brevity. The two directed atten-

tions are derived from a shared relation matrix,M ∈ R(p2 )×Tu , calculated by sticker representation
O ∈ Rp×p×d and utterance representation h ∈ RTu×d . The scoreMk j ∈ R in the relation matrixM
indicates the relation between the kth sticker representation unit Ok , k ∈ [1,p2] and the jth word
hj , j ∈ [1,Tu ] and is computed as:

Mk j = σ (Ok ,hj ), (9)

σ (x ,y) = wᵀ[x ⊕ y ⊕ (x ⊗ y)], (10)

where σ is a trainable scalar function that encodes the relation between two input vectors. ⊕
denotes a concatenation operation and ⊗ is the element-wise multiplication.
Next, a two-way max pooling operation is conducted onM , i.e.,let τuj = max(M:j ) ∈ R represent

the attention weight on the jth utterance word by the sticker representation, corresponding to the
“utterance-wise attention.” This attention learns to assign high weights to the important words
that are closely related to sticker. We then obtain the weighted sum of hidden states as “sticker-
aware utterance representation” l :

l =
Tu∑
j

τuj hj . (11)
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Similarly, stickerwise attention learns which part of a sticker is most relevant to the utterance.
Let τ s

k
= max(Mk :) ∈ R represent the attentionweight on thekth unit of the sticker representation.

We use this to obtain the weighted sum of Ok , i.e., the “utterance-aware sticker representation” r :

r =

p2∑
k

τ skOk . (12)

After obtaining the two outputs from the co-attention module, we combine the sticker and ut-
terance representations and finally get the ranking result. We first integrate the utterance-aware
sticker representation r with the original sticker representation Oflat using an integrate function,
named IF :

Q1 = IF (Oflat, r ) , (13)

IF(x ,y) = FC (x ⊕ y ⊕ (x ⊗ y) ⊕ (x + y)) , (14)

where FC denotes the fully connected (FC) layer, and we use the ReLU [53] as the activation func-
tion, where ⊕ represents the vector concatenation along the final dimension of the vector and ⊗
denotes the elementwise product operation. We add the sticker-aware utterance representation l
into Q1 together and then apply a fully connected layer with ReLU activation:

Q2 = FC(Q1 ⊕ l ). (15)

5.5 User Preference Modeling Module

Users have their preference when selecting the sticker as the response of the multi-turn dialog
context. Hence, to recommend the sticker more accurately, our model should consider the user’s
preference when giving the final sticker recommendation. Intuitively, the sticker that selected by
the user recently contains the user’s preference, and these history data can help our model to
build the preference representation. As for constructing the preference modeling module, our mo-
tivation is to find the semantically similar dialog contexts in the history data, and then use the
corresponding selected stickers of these dialog contexts to facilitate the final sticker prediction of
the current dialog context. Hence, we propose the user preference memory and the architecture of
this module as shown in Figure 7. The proposed user preference memory unit inherits from mem-
ory networks [10, 23, 66, 69] and generally has two steps: (1) memory addressing and (2) memory
reading. The user preference memory consists of a set of history multi-turn dialog contexts and
selected stickers. Though one action is corresponding to a dialog context, it should attend to the
different history contexts (i.e., memory slots) upon the current dialog context. Thus, we address
and read the memory unit as follows.

5.5.1 History Encoding. To store the history dialog contexts and selected stickers, we encode
them into vector spaces using the same method as used when encoding current dialog context and
candidate stickers. Concretely, first, attentive module is employed to encode all the dialog contexts
{ŝ1, . . . , ŝTh }:

h
k

i = mean-pooling(Transformer(ûki )), (16)

whereh
k

i is the vector representation of the ith utterance in the kth history, and the Transformer is
the same operation as shown in Equation (2)–Equation (8). Different with the Transformer used in
Equation (2), the query, key, and value in Equation (16) are all ûki , where we conduct self-attention
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Fig. 7. Framework of user preference modeling module that consists a position-aware RNN and a key-value

memory network. We use the history dialog contexts as the keys and the history selected stickers as the

values. Finally, we use the representation of the current dialog context as the query the user preference

memory.

over all history dialog contexts. Then, we use a max-pooling layer to obtain the vector represen-

tation h
k
of the kth dialog context in history:

h
k
= max

({
h
k

1 , . . . ,h
k

Th

})
. (17)

Next, we use the same image encoder Inception-v3 in Section 5.2 to encode all the stickers
{ĉ1, . . . , ĉTh } of each history dialog context into vector representations {O1, . . . ,OTh }:

Ok = Inception-v3(ĉk ), (18)

where sticker representationOk ∈ Rd is a one-dimensional vector, and we drop the outputO and
use the output Of lat as the Ok .
Intuitively, it is much easier for the user to recall their recently used stickers than the stickers

they used a long time ago. Thus, we propose a RNN-based position-aware user history modeling
layer that incorporates the position feature into the history data representation, e.g., history dia-

log context representation h
k
and history selected sticker representationOk . We first concatenate

the position of history dialog context as an additional feature to the vector representation of di-

alog representation h
k
and sticker representation Ok . Then, we employ an RNN to encode these

representations in chronological order:

ĥk = RNN(tk ⊕ hk , ĥk−1), (19)

Ôk = RNN(tk ⊕ Ok , Ôk−1). (20)

Finally, we obtain the position-aware history data representations {ĥ1, . . . , ĥTh } and {Ô1, . . . , ÔTh }
and we will introduce how to store them into user preference memory.

5.5.2 Memory Addressing. After obtaining all the vector representations of history sticker and
dialog context, we employ a key-value memory network and store them into each key-value slot,
as shown in Figure 7. In this memory network, we use the dialog contexts as the keys and use the
corresponding selected stickers as the values.
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Fig. 8. Framework of fusion network. The black circle in the right of the figure indicates the interaction

combination and gated fusion.

First, we construct the query from the current dialog context, which will be used to retrieve the
user preference representation from the memory network. We apply a max-pooling layer on the
representations of each utterance in the current dialog context:

him = mean-pooling
({
hi1, . . . ,h

i
Tx

})
, (21)

h = max
{
h1m , . . . ,h

Tu
m

}
, (22)

where him is the representation of ith utterance in the current dialog context and h ∈ Rd is used
as the query, and it represents the overall information of the current dialog context. Next, we use
h to calculate the read weights over each memory slot:

δk = softmax(hWδ ĥ
k ), (23)

where δk ∈ [0, 1] is the read weight for the kth memory slot andWδ is a trainable parameter.

5.5.3 Memory Reading. After obtaining the read weights {δ1, . . . ,δTh } for all the memory slots,
we can write the semantic output for preference memory by

r =

Th∑
k

δkÔk , (24)

where r in essence represents a semantic preference representation and will be used when pre-
dicting the sticker in current dialog context.

5.6 Fusion Network

Until now, we have obtained the user preference representation and interaction result between
each utterance and the candidate sticker. Here, we again include the utterance index i , which has
been omitted in previous subsections, and Q2 now becomes Q i

2. Since the utterances in a multi-
turn dialog context are in chronological order, we employ a Fusion RNN and a Fusion Transformer

to model the short-term and long-term interaction between utterance {Q1
2, . . . ,Q

Tu
2 }. Fusion RNN

(shown in the top part of Figure 8) is based on the recurrent network, which can capture short-
term dependency over each utterance interaction result. Fusion Transformer (shown in the bottom
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part of Figure 8) is based on the self-attention mechanism, which is designed for capturing the
important elements and the long-term dependency among all the interaction results.

5.6.1 Fusion RNN. Fusion RNN first reads the interaction results for each utterance
{Q1

2, . . . ,Q
Tu
2 } and then transforms into a sequence of hidden states. In this article, we employ

the gated recurrent unit (GRU) [12] as the cell of fusion RNN, which is popular in sequential mod-
eling [20, 64, 78]:

дi = RNN
(
Q i
2,дi−1

)
, (25)

where дi is the hidden state of the fusion RNN and д0 is the initial state of RNN, which is initialized
randomly. Finally, we obtain the sequence of hidden states {д1, . . . ,дTu }. One can replace GRUwith
similar algorithms such as Long-Short Term Memory network (LSTM) [33]. We leave the study as
future work.

5.6.2 Fusion Transformer. To model the long-term dependency and capture the salience utter-
ance from the context, we employ the self-attention mechanism introduced in Equations (5)–(8).
Concretely, given {Q1

2, . . . ,Q
Tu
2 }, we first employ three linear projection layers with different pa-

rameters to project the input sequence into three different spaces:

Qi = FC(Q i
2), (26)

K i = FC(Q i
2), (27)

V i = FC(Q i
2). (28)

Then we feed these three matrices into the self-attention algorithm illustrated in Equations (5)–(8).
Finally, we obtain the long-term interaction result {д̂1, . . . , д̂Tu }.

5.6.3 Long Short Interaction Combination. To combine the interaction representation gener-
ated by fusion RNN and fusion Transformer, we employ the SUMULTI function proposed in Ref-
erence [70] to combine these representations, which has been proven effective in various tasks:

дi = ReLU

(
Ws

[
(д̂i − дi ) ⊗ (д̂i − дi )

д̂i ⊗ дi
]
+ bs
)
, (29)

where ⊗ is the element-wise product. The new interaction sequence {д1, . . . ,дTu } is then boiled
down to a matching vector д̃Tu by another GRU-based RNN:

д̃i = RNN(д̃i−1,дi ). (30)

We use the final hidden state д̃Tu as the representation of the overall interaction result between
the whole utterance context and the candidate sticker.

5.6.4 Gated Fusion. In the final prediction, our model combines the current dialog context in-
teraction result and user preference representation to predict the final result. However, in each
case, the information required for current dialog context interaction and user preference repre-
sentation is not necessarily the same. If the current dialog context is very similar to the history
dialog context, then the historical information should play a greater role in prediction. To incor-
porate the user preference information into final sticker prediction, we employ a gated fusion that
dynamically fuses the current context interaction result and user preference representation to-
gether by using a gate fд . To dynamically fuse these two information sources, we calculate a gate
fд ∈ [0, 1] that decide which part should the model concentrates on when making the final sticker
selection decision:

fд = σ (FC([r ⊕ д̃Tu ])), (31)
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where σ is the sigmoid function and ⊕ denotes the vector concatenation operation. Next, we apply
a weighted sum operation using the gate fд on current context interaction result д̃Tu and user
preference representation r , as shown in Equation (32). Finally, we apply a fully connected layer
to produce the matching score ŷ of the candidate sticker:

ŷ = σ (FC( fд ∗ д̃Tu + (1 − fд ) ∗ r )), (32)

where ŷ ∈ (0, 1) is the matching score of the candidate sticker.

5.7 Learning

Recall that we have a candidate sticker setC = {c1, ...cTc } that contains multiple negative samples
and one ground-truth sticker. We use hinge loss as our objective function:

L =
N∑

max
(
0, ŷnegative − ŷpositive +margin

)
, (33)

where ŷnegative and ŷpositive corresponds to the predicted labels of the negative sample and ground-
truth sticker, respectively. The margin is the margin rescaling in hinge loss. The gradient descent
method is employed to update all the parameters in our model to minimize this loss function.

6 EXPERIMENTAL SETUP

6.1 Research Questions

We list nine research questions that guide the experiments:

• RQ1 (See Section 7.1): What is the overall performance of PESRS compared with all base-
lines?

• RQ2 (See Section 7.2): What is the effect of each module in PESRS?
• RQ3 (See Section 7.3): How does the performance change when the number of utterances

changes?
• RQ4 (See Section 7.4): Can co-attention mechanism successfully capture the salient part on

the sticker image and the important words in dialog context?
• RQ5 (See Section 7.5): What is the influence of the similarity between candidate stickers?
• RQ6 (See Section 7.6): What is the influence of the parameter settings?
• RQ7 (See Section 7.7): What is the influence of the user history length?
• RQ8 (See Section 7.8): What is the performance of using the user’s most selected sticker as

the response?
• RQ9 (See Section 7.9): Can sticker encoder capture the semantic meaning of sticker?

6.2 Comparison Methods

Wefirst conduct an ablation study to prove the effectiveness of each component in PESRS as shown
in Table 3. Specifically, we remove each key part of our PESRS to create ablation models and then
evaluate the performance of these models.
Next, to evaluate the performance of ourmodel, we compare it with the following baselines. Note

that, we adapt VQA andmulti-turn response selectionmodels to the sticker response selection task
by changing their input text encoder to image encoder. Since we incorporate the user history data
into our model, we also compare with the user modeling method that has been widely used in the
recommendation tasks.
(1) SMN: Reference [78] proposes a sequential matching network to address response selection

for the multi-turn conversation problem. SMN first matches a response with each utterance in the
context. Then vectors are accumulated in chronological order through an RNN. The final matching
score is calculated with RNN.
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Table 3. Ablation Models for Comparison

Acronym Gloss
PESRS w/o Classify PESRS w/o emoji classification task
PESRS w/o DIN PESRS w/o Deep Interaction Network
PESRS w/o FR PESRS w/o Fusion RNN
PESRS FR2T Change the Fusion RNN in PESRS to Transformer with

positional encoding
PESRS w/o UPM PESRS w/o User PreferenceMemory
PESRS w/o TAR PESRS w/o Time-Aware RNN

(2)DAM:Reference [89] extends the transformermodel [67] to themulti-turn response selection
task, where representations of text segments are constructed using stacked self-attention. Then,
truly matched segment pairs are extracted across context and response.
(3)MRFN: Reference [64] proposes a multi-representation fusion network that consists of mul-

tiple dialog utterance representation methods and generates multiple fine-grained utterance rep-
resentations. Next, they argue that these representations can be fused into final response candidate
matching at an early stage, at the intermediate stage or the last stage. They evaluate all stages and
find fusion at the last stage yields the best performance. This is the state-of-the-art model on the
multi-turn response selection task.
(4) Synergistic:Reference [29] devises a novel synergistic network onVQA task. First, candidate

answers are coarsely scored according to their relevance to the image-question pair. Afterward,
answerswith high probabilities of being correct are re-ranked by synergizingwith image and ques-
tion. This model achieves the state-of-the-art performance on the Visual Dialog v1.0 dataset [13].

(5) PSAC: Reference [45] proposes the positional self-attention with co-attention architecture
on VQA task, which does not require RNNs for video question answering. We replace the output
probability on the vocabulary size with the probability on candidate sticker set.
(6) SRS:We propose the first sticker selection method consists of the sticker and dialog context

encoding module, deep matching network and information fusion layer in our previous work [22].
This method achieves the state-of-the-art performance on the multi-turn dialog-based sticker se-
lection dataset.
(7) LSTUR: Reference [2] proposes a long- and short-term user modeling method to represent

the long- and short-term user preference and then apply this method to the news recommendation
task. Experiments on a real-world dataset demonstrate their approach can effectively improve
the performance of neural news recommendation method. To adapt this method on our sticker
selection task, we replace their news encoding network with the sticker image encoding network,
Inception-v3, as the same as we used in our model. Since there are countless users in our task, we
cannot obtain a static user embedding as they used in their model. For fair, comparison, we replace
the user embedding in their model to current dialog context.
For the first three multi-turn response selection baselines, we replace the candidate utterance

embedding RNN or Transformer network with the image encoding CNN network Inception-v3,
which is the same as used in our proposed model. This Inception-v3 network is initialized using a
pre-trained model3 for all baselines and PESRS.

3https://github.com/tensorflow/models/tree/master/research/slim.
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Table 4. RQ1: Automatic Evaluation Comparison

MAP R10@1 R10@2 R10@5
Visual Q&A methods

Synergistic 0.593 0.438 0.569 0.798
PSAC 0.662 0.533 0.641 0.836
Multi-turn response selection methods

SMN 0.524 0.357 0.488 0.737
DAM 0.620 0.474 0.601 0.813
MRFN 0.684 0.557 0.672 0.853
LSTUR 0.689 0.558 0.68 0.874
SRS 0.709 0.590 0.703 0.872
PESRS 0.743 0.632� 0.740� 0.897

Significant differences are with respect to MRFN.

6.3 Evaluation Metrics

Following References [64, 89], we employ recall at positionk inn candidatesRn@k as an evaluation
metric, which measures if the positive response is ranked in the top k positions of n candidates.
Following Reference [89], we also employ mean average precision (MAP) [4] as an evaluation
metric. The statistical significance of differences observed between the performance of two runs
is tested using a two-tailed paired t-test and is denoted using � (or �) for strong significance at
α = 0.01.

6.4 Implementation Details

We implement our experiments using TensorFlow [1] on an NVIDIA GTX 2080Ti GPU. If the
number of words in an utterance is less than 30, then we pad zeros; otherwise, the first 30 words
are kept. The word embedding dimension is set to 100 and the number of hidden units is 100. The
batch size is set to 32. 9 negative samples are randomly sampled from the sticker set containing
the ground-truth sticker, and we finally obtain 10 candidate stickers for the model to select. We
initialize all the parameters randomly using a Gaussian distribution in [−0.02, 0.02]. We use Adam
optimizer [39] as our optimizing algorithm, and the learning rate is 1 × 10−4.
7 EXPERIMENTAL RESULT

7.1 Overall Performance

For research question RQ1, we examine the performance of our model and baselines in terms of
each evaluation metric, as shown in Table 4. First, the performance of the multi-turn response se-
lection models is generally consistent with their performances on text response selection datasets.
SMN [78], an earlier work on multi-turn response selection task with a simple structure, obtains
the worst performance on both sticker response and text response selection. DAM [89] improves
the SMNmodel and gets better performance. MRFN [64] is the state-of-the-art text response selec-
tion model and achieves the best performance among baselines in our task as well. Second, VQA
models perform generally worse than multi-turn response selection models, since the interaction
between multi-turn utterances and sticker is important, which is not taken into account by VQA
models. Third, our previously proposed SRS achieves better performance with 3.36%, 5.92%, and
3.72% improvements in MAP, R10@1, and R10@2, respectively, over the state-of-the-art multi-turn
selection model, i.e., MRFN, and with 6.80%, 10.69%, and 8.74% significant increases (with p-value
<0.05) over the state-of-the-art visual dialog model, PSAC. Finally, comparing with our previously
proposed sticker selection method SRS, our newly proposed model PESRS that incorporates the
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Table 5. RQ2: Evaluation of Different Ablation Models

MAP R10@1 R10@2 R10@5
PESRS w/o Classify 0.714 0.598 0.707 0.866
PESRS w/o DIN 0.728 0.612 0.725 0.888
PESRS w/o FR 0.727 0.609 0.725 0.886
PESRS FR2T 0.725 0.610 0.719 0.881
PESRS w/o UPM 0.709 0.590 0.703 0.872
PESRS w/o TAR 0.710 0.589 0.706 0.873
PESRS 0.743 0.632� 0.740� 0.897

user preference information achieves the state-of-the-art performance with 4.8%, 7.1%, and 5.3%
improvements in MAP , R10@1, and R10@2, respectively, over our previous method SRS, which is
just based on the multi-modal matching between utterance and sticker image. That demonstrates
the superiority of incorporating the user preference information into sticker selection model.

7.2 Ablation Study

For research questionRQ2, we conduct ablation tests on the use of the sticker classification loss (in-
troduced in Section 5.2), the deep interaction network (introduced in Section 5.4), the fusion RNN
(introduced in Section 5.6.1), the user preferencememorywithout position aware RNN (introduced
in Section 5.5) and the full user preference memory (introduced in Section 5.5.1), respectively. The
evaluation results are shown in Table 5. The performances of all ablation models are worse than
that of PESRS under all metrics, which demonstrates the necessity of each component in PESRS.
We also find that the sticker classification makes contribution to the overall performance. And this
additional task can also speed up the training process, and help our model to converge quickly.
We use 21 hours to train the PESRS until convergence, and we use 35 hours for training PESRS
w/o Classify. The fusion RNN brings a significant contribution (with p-value <0.05), improving
the MAP and R10@1 scores by 2.2% and 3.8%, respectively. We also change the fusion RNN to a
Transformer with positional encoding, which leads to a decrease of the performance that verifies
the effectiveness of fusion RNN. The deep interaction network also plays an important part. With-
out this module, the interaction between the sticker and utterance are hindered, leading to a 3.3%
drop in R10@1. Particularly, since the user preference memory capture the preference of user’s
sticker selection, we can see that when the user preference memory is removed from the model,
the model suffers from dramatic performance drop in terms of all metrics. And the position-aware
user history encoding RNN also makes contribution to the PESRS model, improving theMAP and
R10@1 scores by 4.6% and 7.3%, respectively.

7.3 Analysis of Number of Utterances

For research question RQ3, in addition to comparing with various baselines, we also evaluate
our model when reading different number of utterances to study how the performance relates to
number of context turns.
Figure 9 shows how the performance of the PESRS changes with respect to different numbers

of utterances turns. In this experiment, we change the numbers of utterances turns in both cur-
rent dialog context and history dialog contexts. We observe a similar trend for PESRS on the first
three evaluation metrics MAP , R10@1, and R10@2: They first increase until the utterance num-
ber reaches 15 and then fluctuate as the utterance number continues to increase. There are two
possible reasons for this phenomena. The first reason might be that, when the information in the

ACM Transactions on Information Systems, Vol. 39, No. 2, Article 12. Publication date: February 2021.



12:22 S. Gao et al.

Fig. 9. RQ3: Performance of PRSRS on all metrics when reading different number of utterances.

utterances is limited, the model can capture the features well, and thus when the amount of infor-
mation increases, the performance gets better. However, the capacity of the model is limited, and
when the amount of information reaches its upper bound, it gets confused by this overwhelming
information. The second reason might be of the usefulness of the utterance context. Utterances
that occur too early before the sticker response may be irrelevant to the sticker and bring unnec-
essary noise. As for the last metric, the above observations do not preserve. The R10@5 scores
fluctuate when the utterance number is below 15, and drop when the utterance number increases.
The reason might be that R10@5 is not a strict metric, and it is easy to collect this right sticker in
the set of half of the whole candidates. Thus, the growth of the information given to PESRS does
not help it perform better but the noise it brings harms the performance. However, though the
number of utterances changes from 3 to 18, the overall performance of PESRS generally remains
at a high level, which proves the robustness of our model.

7.4 Analysis of Attention Distribution in Interaction Process

Next, we turn to addressRQ4. We also show three cases with the dialog context in Figure 10. There
are four stickers under each dialog context, one is the selected sticker by our model and other three
stickers are random selected candidate stickers. As a main component, the deep interaction net-
work comprises a bi-directional attentionmechanism between the utterance and the sticker, where
each word in the utterance and each unit in the sticker representation have a similarity score in
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Fig. 10. RQ4: Examples of sticker selection results produced by SRS. We show the selected sticker and three

random selected candidate stickers with the attention heat map. The lighter the area on image is, the higher

attention weight it gets. The first two cases are collected from a chitchat group, and the third one is collected

from a VPN custom service group.

the co-attention matrix. To visualize the sticker selection process and to demonstrate the inter-
pretability of deep interaction network, we visualize the stickerwise attention τ s (Equation (12))
on the original sticker image and show some examples in Figure 10. The lighter the area is, the
higher attention it gets.
Facial expressions are an important part in sticker images. Hence, we select several stickers

with vivid facial expression in Figure 10. Take the fourth sticker in Case 1, for example, where
the character has a wink eye and a smiling mouth. The highlights are accurately placed on the
character’s eye, indicating that the representation of this sticker is highly dependent on this part.
Another example is the last sticker of Case 3: There are two question marks on the top right corner
of the sticker image, which indicates that the girl is very suspicious of this. In addition to facial
expression, the characters gestures can also represent emotions. Take the third sticker in Case 2,
for example: The character in this sticker gives a thumbs up representing support and we can
find that the attention lies on his hand, indicating that the model learns the key point of his body
language.
Furthermore, we randomly select three utterances from the test dataset, andwe also visualize the

attention distribution over the words in an utterance, as shown in Figure 11. We use the weight τuj
for the jth word (calculated in Equation (11)) as the attention weight. We can find that the attention
module always gives a higher attention weight on the salience word, such as the “easy method,”
“make a lot of money,” and “use Chine Mobile.”

7.5 Influence of Similarity between Candidates

In this section, we turn to RQ5 to investigate the influence of the similarities between candidates.
The candidate stickers are sampled from the same set, and stickers in a set usually have a similar
style. Thus, it is natural to ask: Can our model identify the correct sticker from a set of similar
candidates? What is the influence of the similarity between candidate stickers? Hence, we use the
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Fig. 11. RQ4: Examples of the attention weights of the dialog utterance. We translate Chinese to English

word by word. The darker the area, the higher weight the word gets.

Fig. 12. RQ5: Performance of SRS on groups of different candidate similarity.

SSIM metric [3, 71] to calculate the average similarity among all candidates in a test sample and
then aggregate all test samples into five groups according to their average similarities.We calculate
the R10@1 of each group of samples, as shown in Figure 12. The x-axis is the average similarity
between candidate stickers and the y-axis is the R10@1 score.

Not surprisingly, our model gains the best performance when the average similarity of the can-
didate group is low and its performance drops as similarity increases. However, we can also see
that, though similarity varies from minimum to maximum, the overall performance can overall
stay at high level. R10@1 scores of all five groups are above 0.42, and the highest score reaches
0.59. That is, our model is highly robust and can keep giving reasonable sticker responses.

7.6 Robustness of Parameter Setting

In this section, we turn to addressRQ6 to investigate the robustness of parameter setting. We train
PESRS model in different parameter setting as shown in Figure 13. The hidden size of the RNN,
CNN and the dense layer in our model is tuned from 50 to 200, and we use the MAP and Rn@k to
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Fig. 13. RQ6: Performance of PESRS with different parameter settings.

evaluate each model. As the hidden size grows larger from 50 to 100, the performance rises, too.
The increment of hidden size improves the MAP and R10@1 scores by 1.1% and 1.9%. When the
hidden size continuously goes larger from 100 to 200, the performance is declined slightly. The
increment of hidden size leads to a 3.9% and 5.3% drop in terms of MAP and R10@1, respectively.
Nonetheless, we can find that each metric maintained at a stable interval, which demonstrates that
our PESRS is robust in terms of the parameter size.

7.7 Influence of User History Length

Next, we address RQ7, which focuses on the influence of using different lengths of user history.
We feed different lengths of user sticker selection history to the model, and we show the model
performance of different lengths in Figure 14. From this figure, we can see that the model per-
forms worse when we just feed only 2 user stickers into the selection history. The sticker selection
prediction performance of the model rises sharply as the history length increases. This indicates
that it requires a large amount of user behavior patterns to model the preference of the user. And
the growth of user behavior sequence helps PESRS to better capture sticker selection patterns
according to the dialog context.

7.8 Analysis of User Preference Memory

Next, we turn to RQ8 to investigate the effectiveness of user preference modeling module. We
propose a simple heuristic method and two variations of our user preference memory module.
To verify the necessity of using user preference modeling network, we use a simple heuristic

method (MostSelected) that just uses the most selected sticker by user as the sticker prediction of
current dialog context. This method does not consider the semantic matching degree of previous
dialog context and current dialog context. Consequently, the predicted sticker of this heuristic
method is not flexible.
The first variation (AverageMem) is to simply apply an average-pooling layer on all the previous

selected sticker representations by the corresponding user:

r =

Th∑
k

Ôk . (34)
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Fig. 14. RQ7: Performance of PESRS with different user history length.

Then we use this as the user preference representation and feed r to the final gated fusion layer,
as shown in Equation (31).
The second variation (WeightedMem) is to remove the key addressing process and directly apply

an attention-then-weighted method on all the user previous selected stickers. This variation can
be split into two steps: (1) calculate attention weights and (2) weighted sum stickers. We use the
query vector h (shown in Equation (22)) to calculate attention weights of each user previously
selected stickers {Ô1, . . . , ÔTh }, and the query vector h is the same as used in our proposed user
preference memory module:

δk = softmax(hWδ Ôk ), (35)

where δk ∈ [0, 1] is the attention weight for the kth selected sticker. Then we apply the weighted-
sum on all the user previously selected sticker representations:

r =

Th∑
k

δkÔk . (36)

Finally, we feed this preference representation r into final gated fusion layer (Equation (31)). Note
that the above two variations exclude the histories of dialogue contexts, and we employ these
experiments to verify the effectiveness of incorporating histories of dialogue contexts.
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Table 6. RQ8: Performance of Two Variations User

Preference Memory Module

MAP R10@1 R10@2 R10@5
SRS 0.709 0.590 0.703 0.872
MostSelected 0.545 0.419 0.490 0.679
AverageMem 0.701 0.573 0.701 0.870
WeightedMem 0.694 0.565 0.689 0.866
PESRS 0.743 0.632� 0.740� 0.897

We conduct the experiments on these variations and comparewith our proposed PESRS and SRS,
as shown in Table 6. From this table, we can find thatMostSelected performs theworst among all the
methods. That demonstrates the necessity of exploring a learning-based method to leverage the
user history data to recommend the proper sticker. By comparingAverageMemwith the SRS, which
does not incorporate the user’s history, we find that although AverageMem and WeightedMem

leverages the user’s history information, it cannot take advantages from these data to boost the
performance of sticker selection. The reason is that these methods cannot model the relationship
between current dialog context and previous history data, thus it cannot determine which history
data may be helpful for the current context.

7.9 Sticker Classification and Emotion Diversity

Finally, we turn to RQ9. In this dataset, the sticker authors give each sticker an emoji label that
indicates the approximate emotion of the sticker. However, this label is not a mandatory field when
creating a sticker set in this online chatting platform. Some authors use random emoji or one emoji
label for all the stickers in the sticker set. Thus, we cannot incorporate the emoji label and tackle
the sticker selection task as an emoji classification task. We randomly sample 20 sticker sets and
employ human annotators to check whether the emoji label in sticker set is correct, and we find
that there are 2 sticker set of them have wrong emoji labels for the stickers. Since we introduce the
auxiliary sticker classification (introduced in Section 5.2) to help the model for accelerating con-
vergence of the model training, we also report the sticker classification performance in this article.
Note that, since the emoji label of the sticker may not be correct, therefore, the classification per-
formance is not accurate, the results are for reference only. The results of the sticker classification
are 65.74%, 50.75%, 47.02%, and 61.20% for accuracy, F1, recall and precision, respectively. These
results indicate that the sticker encoder can capture the semantic meanings of the sticker image.
To illustrate the diversity of the emotion expressed by the stickers, we use the emoji label as

the indicator of the emotion and plot the distribution of the emoji label of stickers. In Figure 15,
we only show the top 50 emoji labels used in all the sticker set in our training dataset, and the
total number of unique emoji label is 893. From Figure 15, we can find that there are many stickers
with the emoji label and . The reason is that some of the sticker authors assign or
as the emoji label to all the stickers in their sticker set, as we mentioned before (some authors use
random emoji or one emoji label for all the stickers in the sticker set).

8 CONCLUSION

In our previous work, we propose the task of multi-turn sticker response selection, which rec-
ommends an appropriate sticker based on multi-turn dialog context history without relying on
external knowledge. However, this method only focuses on measuring the matching degree be-
tween the dialog context and sticker image, which ignores the user preference of using stickers.

ACM Transactions on Information Systems, Vol. 39, No. 2, Article 12. Publication date: February 2021.



12:28 S. Gao et al.

Fig. 15. RQ9: Number of the used emoji labels over stickers in training dataset (top 50 emojis of 893 unique

emojis in total).

Hence, in this article, we propose the PESRS to recommend an appropriate sticker to user based on
multi-turn dialog context and sticker using history of user. Specifically, PESRS first learns the rep-
resentation of each utterance using a self-attention mechanism, and learns sticker representation
by CNN. Second, a deep interaction network is employed to fully model the dependency between
the sticker and utterances. The deep interaction network consists of a co-attention matrix that
calculates the attention between each word in an utterance and each unit in a sticker representa-
tion. Third, a bi-directional attention is used to obtain utterance-aware sticker representation and
sticker-aware utterance representations. Next, we retrieve the recent user sticker selections, and
then propose a user preference modeling module that consists a position-aware history encoding
network and a key-value-based memory network to generate the user preference representation
dynamically according to current dialog context. Then, a fusion network models the short-term
and long-term relationship between interaction results, and a gated fusion layer is applied to fuse
the current dialog interaction results and user preference representation dynamically. Finally, a
fully connected layer is applied to obtain the final sticker prediction using the output of gated
fusion layer. Our model outperforms state-of-the-art methods including our previous method SRS
in all metrics and the experimental results also demonstrate the effectiveness of each module in
our model. In the near future, we aim to propose a personalized sticker response selection system.
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