From Standard Summarization to New Tasks and Beyond: Summarization with Manifold Information

Shen Gao and Rui Yan shengao@pku.edu.cn

Outline

- 1. Introduction to summarization with manifold information
 - 1. Traditional summarization
 - 2. New summarization task
 - 3. Challenges and problems
- 2. Background knowledge
 - 1. Concepts, problem formulation, and task statements
 - 2. Deep learning for summarization
- 3. Summarization by incorporating document structure
 - 1. Long document summarization
 - 2. Timeline summarization
 - 3. Dialog summarization
 - 4. Academic paper summarization

- 5. Movie Summarization
- 4. Summarization by incorporating additional knowledge
 - 1. Reader-aware summarization
 - 2. Template-based summarization
 - 3. Multi-modal summarization
 - 4. Opinion Summarization
- 5. Recent trends
 - Multi-modal summarization
 - 2. Long document summarization
 - 3. Dialog summarization
- 6. Summary

Target Audience

- Our target audiences are researchers and practitioners with some deep learning and text process background
- Our target audiences are interested in new summarization task and the technologies behind the prosperity of real-world summarization application in industry and academia.
- They would like to learn how to build a summarization system with state-of-the-art technologies.

Introduction

- Two types of text summarization
 - Summarizes a plain text
 - Generating summary with manifold information
- New summarization tasks aim to produce a better and appropriate summary by incorporating manifold information in many real-world applications.

Task of Traditional summarization

- Very simple and general
- Input: a plain text document
- Output: a short dense text describe the main idea of the input document

New summarization task

- Different with traditional summarization task
- Using structured document as input
- Leveraging other knowledge source as additional input
- These new summarization task can better adapt to real-world summarization applications

Challenges and problems

- How to understand the semantic meanings of the text with structure?
- How to incorporate additional knowledge when summarizing documents?

Background: Deep Learning for Summarization

- Extractive Summarization
 - Sequence Labeling uses an RNN to read the sentences only once
 - **Encoder-Decoder** uses two RNN to encode the passage and decode the sentence pointer.
 - Reinforcement learning method directly optimize the ROUGE score
 - Pretraining techniques employ the language model pre-training model
 - Graph Model contains additional nodes which act as the intermediary between sentences and enrich the cross-sentence relations
- Abstractive Summarization
 - Sequence-to-sequence based text generation methods
 - Copy mechanism directly copy the OOV words
 - Selective encoding encode the important semantic parts and ignore the trivial parts.
 - Pretraining techniques employ the language model pre-training model
 - Contrastive Learning bridge the gap between the learning objective and evaluation metrics

Datasets

- CNNDM
- WikiSum
- BIGPATENT
- Newsroom
- WikiHow
- XSUM

SummaRuNNer: A Recurrent Neural Network Based Sequence Model for Extractive Summarization of Documents

- Composed of a hierarchical document encoder and an attention-based extractor.
- Reader is to derive the meaning representation of a document based on its sentences and their constituent words
- Sentence extractor applies attention to directly extract salient sentences after reading them

- Human usually select salient sentences and then rewrite them as the final summary.
- Sentence-level policy gradient method to bridge the nondifferentiable computation between these two neural networks in a hierarchical way.

- Language model pretraining has advanced the state of the art in many NLP tasks
- Explore the potential of BERT for text summarization under a general framework
- Experiments on three datasets show that this model achieves state-of-the-art results

- Contains semantic nodes of different granularity levels apart from sentences
- These additional nodes act as the intermediary between sentences and enrich the cross-sentence relations.

Abstractive Summarization

- Sequence-to-sequence models have provided a viable new approach for abstractive text summarization
- A hybrid pointer-generator network that can copy words from the source text via pointing, which aids accurate reproduction of information

Abstractive Summarization

- A unified model to combine the strength of both state-of-the-art extractor and abstracter.
- Inconsistency loss function is introduced to penalize the inconsistency between two levels of attentions.

A Unified Model for Extractive and Abstractive Summarization using Inconsistency Loss

Abstractive Summarization

Abstractive Summarization

- Pre-training Transformers with self-supervised objectives on large text corpora has shown great success when fine-tuned on downstream NLP tasks including text summarization
- Important sentences are removed/masked from an input document and are generated together as one output sequence from the remaining sentences

_	R1/R2/RL	XSum	CNN/DailyMail	Gigaword		
	BERTShare (Rothe et al., 2019)	38.52/16.12/31.13	39.25/18.09/36.45	38.13/19.81/35.62	. <eos></eos>	Target text
	MASS (Song et al., 2019)	39.75/17.24/31.95	42.12/19.50/39.01	38.73/19.71/35.96	1 1	raiget text
Bidirectic	UniLM (Dong et al., 2019)	-	43.33/20.21/40.51	38.45/19.45/35.75		
Encode	BART (Lewis et al., 2019)	45.14/22.27/37.25	44.16 /21.28/40.90	-	oder	
A B	T5 (Raffel et al., 2019)	-	43.52/ 21.55 /40.69	-	<u> </u>	
BART: Denoising Se	PEGASUS _{LARGE} (C4)	45.20/22.06/36.99	43.90/21.20/40.76	38.75/19.96/36.14	white .	Target text [Shifted Right]
Language Generati	PEGASUS _{LARGE} (HugeNews)	47.21/24.56/39.25	44.17/21.47/41.11	39.12/19.86/36.24		to ted kight)
PEGASUS: Pre-trainī	ng with Extracted Gap-sentences for	Original	Pegasus is mythical . It is pur	e white . It names the model .		

Incorporating Document Structure

- Timeline Summarization
 - help users to have a quick understanding of the overall evolution of any given topic
 - consider evolutionary characteristics of news plus to traditional summary elements
- Extreme Long Document Summarization
 - the input document can be very long, such as an academic paper or a patent document which is longer than the news article
 - extract the salient information and central idea from a large amount of information.
- Dialog Summarization
 - time-consuming for people to review all the context before starting a new dialog
 - the salient information is scattered in the whole dialog history
- Academic paper summarization
 - The reference relationship should be considered into generating summary of academic paper.
- Movie Summarization
 - Summarizing longer narratives, screenplays, whose form and structure is far removed from newspaper articles.

Timeline Summarization

- Timeline summarization is an important research task which can help users to have a quick understanding of the overall evolution of any given topic.
- The previous works are all based on extractive methods
- A large-scale dataset with 169,423 training samples, 5,000 evaluation and 5,000 test samples.
- On average, there are 352.22 words and 61.16 words in article and summary respectively.

Timeline Summarization

- Given any collection of time-stamped news articles, MTLS automatically discovers important yet different stories and generates a corresponding timeline for each story.
- Propose a Two-Stage Affinity Propagation Summarization framework which is a two-stage clustering-based framework.

MTLS Methods		concat		align	+m:1	agree	d-select	
		ROUGE-1	ROUGE-2	ROUGE-1	ROUGE-2	ROUGE-1	ROUGE-2	F1
Baselines								
	Random	0.191	0.027	0.019	0.004	0.010	0.002	0.075
CHIEU2004	LDA	0.192	0.035	0.023	0.005	0.013	0.004	0.089
	k-means	0.229	0.046	0.027	0.006	0.014	0.004	0.096
	Random	0.254	0.049	0.044	0.009	0.037	0.007	0.352
MARTSCHAT2018	LDA	0.289	0.068	0.062	0.017	0.052	0.015	0.387
	k-means	0.291	0.071	0.061	0.017	0.051	0.015	0.376
	Random	0.253	0.048	0.068	0.015	0.058	0.013	0.414
GHALANDARI2020	LDA	0.268	0.062	0.085	0.025	0.076	0.024	0.440
	k-means	0.284	0.073	0.096	0.030	0.085	0.028	0.467
Our metho	d							
2SAPS		0.312	0.084	0.096	0.033	0.089	0.029	0.556

Multi-TimeLine Summarization (MTLS): Improving Timeline Summarization by Generating Multiple Summaries

Extreme Long Document Summarization

- Datasets of long document summarization task
- A hierarchical encoder, capturing the discourse structure of the document.
- A discourse-aware decoder that generates the summary.

Dataset	# Doc		•	Doc # word	_	Den.
PUBMED ARXIV	133,215 215,913			3049.0 6029.9		5.8 3.8
BILLSUM	23,455	207.7	7.2	1813.0	13.6	4.1
BIGPATENT	1,341,362	116.5	3.7	3573.2	36.3	2.4
GOVREPORT	19,466	553.4	17.8	9409.4	19.0	7.3

Extreme Long Document Summarization

- Sliding selector network with dynamic memory for extractive summarization of long-form documents
- A memory to preserve salient information learned from previous windows

Extreme Long Document Summarization

- The main challenge of summarizing long document is how to find salient information from large amount of sentences effectively.
- Encoder-decoder attention with head-wise positional strides

Dialog Summarization - Datasets

Dataset	MEDIASUM	AMI	ICSI	DiDi	CRD3	MultiWOZ	SAMSum	
Source	Transcribed Speech					Written		
Type	Interview	Meeting	Meeting Meeting		Game	Booking	Daily	
Real dialogue	✓	✓	✓	✓	✓	✓	×	
Open domain	✓	×	×	×	×	×	✓	
Public	✓	✓	✓	×	✓	✓	✓	
Dialogues	463,596	137	59	328,880	159	10,438	16,369	
Dial. words	1,553.7	4,757	10,189	/	31,802.8	180.7	83.9	
Summ. words	14.4	322	534	/	2062.3	91.9	20.3	
Turns	30.0	289	464	/	2,507.4	13.7	9.9	
Speakers	6.5	4	6.2	2	9.6	2	2.2	

• In this section we describe the complete pipeline of the model which includes (1) Sequence labelling of utterance tags, (2) Re-ordering of conversation to model discourse relations, and (3) Pointergenerator, coverage based model for abstractive summarization.

- A meeting is naturally full of dialogue-specific structural information
- Previous works model a meeting in a sequential manner, while ignoring the rich structural information
- Dialogue discourse is a dialoguespecific structure that can provide pre-defined semantic relationships between each utterance

- Topic View: Based on what topics were discussed, it can be segmented into several topics
- Stage view: From a conversation progression perspective
- Global View: Conversations can be treated as a whole
- Discreate View: Each utterance can serve as one segment

Multi-View Sequence-to-Sequence Models with Conversational Structure for Abstractive Dialogue Summarization

- Existing features are obtained via open-domain toolkits that are dialog-agnostic or heavily relied on human annotations
- Perform three dialogue annotation tasks takes advantage of dialogue background knowledge encoded in DialoGPT

Language Model as an Annotator: Exploring DialoGPT for Dialogue Summarization

- Existing generated dialog summaries often suffer from insufficient, redundant, or incorrect content
- Explicitly model the rich structures in conversations for more precise and accurate conversation summarization

(a) Utterance and Graph Encoder

(b) Multi-granularity Decoder

Topic-Oriented Spoken Dialogue Summarization for Customer Service with Saliency-Aware Topic Modeling

Datasets

•	Source	# Pairs			Doc. Length		Sum. Length			
Datasets		Train	Val	Test	#Words	# Sent.	# Words	# Sent.	# Sections	
CNN	News	90,266	1,220	1,093	760.5	34.0	45.7	3.6	-	
DailyMail	News	196,961	12,148	10,397	653.3	29.3	54.7	3.9	-	
ScisummNet	Scientific Papers	1009	_	_	4203.4	178.0	150.7	7.4	6.5	
arXiv [†]	Scientific Papers	215,913	6440	6436	4938.0	206.3	220.0	9.6	5.9	
PubMed [†]	Scientific Papers	119,924	6633	6658	3016.0	86.4	203.0	6.9	5.6	
SSN (inductive) SSN (transductive)	Scientific Papers	128,400 128,299	6123 6250	6276 6250	5072.3	290.6	165.1	6.4	10.8	

 Integrating the authors' original highlights (abstract) and the article's actual impacts on the community

ScisummNet: A Large Annotated Corpus and Content-Impact Models for Scientific Paper Summarization with Citation Networks

 Given a set of related publications, related work section generation aims to provide researchers with an overview of the specific research area by summarizing these works and introducing them in a logical order.

Capturing Relations between Scientific Papers: An Abstractive Model for Related Work Section Generation

Movie Summarization

- Most efforts to date have concentrated on the summarization of news articles
- Screenplays, whose form and structure is far removed from newspaper articles.

Incorporating Additional Knowledge

- Reader-aware Summarization
 - reader comments concentrate on the main idea of the news article
 - comments can be used to help the summarization model to capture the main idea
- Template Based Summarization
 - first retrieves a summary template and then edits it into the new summary of the current document.
- Multi-Modal Summarization
 - increase of multi-media data on the web
 - the visual information is incorporated along with the input document into the text summarizing process to improve the quality
- Query-based Summarization
 - search engine provides a list of web pages associated with their summaries
 - should summarize the query focused aspect of the web page instead of the main idea
- Opinion Summarization
 - Summarize the opinion of e-commerce reviews

Reader-aware Summarization

• In the beginning, researchers firstly propose to understand the input document with the feedback of readers using a graph-based method, where they identify three relations (topic, quotation, and mention) by which comments can be linked to one another.

Reader-aware Summarization

Employ a sparse coding based framework for this task which jointly considers news documents and reader comments via an unsupervised data reconstruction strategy.

Reader-aware Summarization

- A large-scale reader-aware summarization dataset (863826 training samples)
- A generative-adversarial based method which conducts the interaction between reader comments and news to capture the reader attention distribution on the article

Template Based Summarization

- Previous seq2seq purely depend on the source, which tends to work unstably
- Use a popular IR platform to Retrieve proper summaries as candidate templates
- Extend the seq2seq framework to jointly conduct template Reranking and template-aware summary generation

Retrieve, Rerank and Rewrite: Soft Template Based Neural Summarization

Template Based Summarization

- Bi-directional Selective Encoding with Template (BiSET) model
- Leverages template discovered from training data to softly select key information from each source article
- A multi-stage process for automatic retrieval of high-quality templates from training corpus.

Template Based Summarization

- In circumstances, the generated summaries are required to conform to a specific pattern
- Template-based methods are too rigid for our patternized summary generation task.
- We propose a summarization framework na med Prototype Editing based Summary Gen erator that incorporates prototype documen t-summary pairs

Multi-Modal Summarization - Image

- Multimodal Summarization with Multimodal Output
- Four modules: text encoder, image encoder, multimodal attention layer, and summary decoder
- Propose a multimodal automatic evaluation (MMAE) method which mainly consid- ers three aspects: salience of text, salience of image, and relevance between text and image.

Multi-Modal Summarization - Image

- Existing MSMO methods are trained by the target of text modality
- Leading to the modality-bias problem
- Propose a multimodal objective function with the guidance of multimodal reference

Multi-Modal Summarization - Video

- Video and document as input
- Selects cover frame from news video and generates textual summary of the news article in the meantime

VMSMO: Learning to Generate Multimodal Summary for Video-based News Articles

Multi-Modal Summarization — Ecommerce

Product Information

Product Title

Product Image 美的冰箱 双门冰箱 两门小型家用风冷无霜电冰箱 静音节能 (Midea Refrigerator, Double-Door, Small Double-Door Household Air-Cooled Frost-Free Refrigerator, Quiet and Efficient)

Product Details

风冷无霜轻柔呵护,保湿增鲜

立体风冷无霜冰箱,冷气均匀分布,科学循环,使食材由内到外均匀冻透 保鲜效果好 ,尽享无霜鲜活

(Air-cooled system makes refrigerator frost-free. Soft cooler keeps your food moist and fresh ...)

格调金玻璃面板 尽显生活品味 网络阿姆纳斯迪斯 网络斯纳 医葡萄毒素

(Golden glass panel shows high quality life ...)

大冷冻空间,冻得多装得多 经济两门冰箱配备大冷冻空间,剔冷效果出色,可以快速东透肉类食品

(Freezer's space is very large, which can hold lots of food ...)

Product Summary

美的金色两门冰箱,搭配玻璃面板,外观时尚。立体风冷无霜技术,使冷气均匀分布。配备大冷冻空间,快速冻透食品,满足全家人需求。

(Midea golden double-door refrigerator with glass panel is fashionable. The technology of stereo air-cooled frost-free makes cold air disperse evenly. The refrigerator freezes food quickly, and the space is large enough to meet the requirement of the whole family.)

- Adopt an aspect-based reward augmented maximum likelihood training method
- Aspect coverage mechanism to keep track of what aspects have been mentioned
- Adopt constrained decoding to enhance the coherence of summaries

Aspect-Aware Multimodal Summarization for Chinese E-Commerce Products

- Query-based summarization highlights those points that are relevant to the user query
- Seq2seq suffers from the drawback of generation of repeated phrases
- A query attention model which learns to focus on different portions of the query
- A new diversity based attention model

 A coarse-to-fine modeling framework for extractive query focused summarization which incorporates a *relevance* estimator, an *evidence* estimator and a *centrality* estimator.

Coarse-to-Fine Query Focused Multi-Document Summarization

- Existing methods are limited by the lack of sufficient large-scale high-quality training datasets.
- Present two QMDS training datasets: (1) QMDSCNN and (2)
 QMDSIR by using two data augmentation methods

Statistics	Train	Val	Test
QMDSCNN (# samples) - Avg. # documents - Avg. Doc. length (# tokens) - Avg. Query length (# tokens)	287,113	13,368	11,490
	6.5	6.5	6.5
	355	346	353
	13.8	14.5	14.2
QMDSIR (# samples) - Avg. # documents - Avg. Doc. length (# tokens) - Avg. Query length (# tokens)	82,076	10,259	10,260
	5.8	5.4	5.5
	1,291	1,402	1,379
	6.2	6.2	6.2

- Hierarchical query focused order-aware multi-document summarization model:
- Hierarchical Encoding
- Ordering Component
- Query Component

Opinion Summarization

- Abstractive opinion summarization framework, which does not rely on gold-standard summaries for training
- Uses an Aspect-based Sentiment Analysis model to extract opinion phrases from reviews, and trains a Transformer model to reconstruct the original reviews from these extractions

Opinion Summarization

- Training data is not available and cannot be easily sourced
- Create a synthetic dataset from a corpus of user reviews by sampling a review, pretending it is a summary

Generating noisy versions thereof which we treat as pseudo-review

input

Unsupervised Opinion Summarization with Noising and Denoising

(d) Partial Copy

Opinion Summarization

- Training data is neither available nor can be easily sourced
- Explicitly incorporating content planning in a summarization model allows the creation of synthetic datasets

Unsupervised Opinion Summarization with Content Planning

Recent trends

- Multi-modal summarization
- Long document summarization
- Dialog summarization

Thanks!

Email: shengao@pku.edu.cn