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Abstract

Timeline summarization targets at concisely sum-
marizing the evolution trajectory along the timeline
and existing timeline summarization approaches
are all based on extractive methods. In this paper,
we propose the task of abstractive timeline summa-
rization, which tends to concisely paraphrase the
information in the time-stamped events. Unlike
traditional document summarization, timeline sum-
marization needs to model the time series informa-
tion of the input events and summarize important
events in chronological order. To tackle this chal-
lenge, we propose a memory-based timeline sum-
marization model (MTS). Concretely, we propose a
time-event memory to establish a timeline, and use
the time position of events on this timeline to guide
generation process. Besides, in each decoding step,
we incorporate event-level information into word-
level attention to avoid confusion between events.
Extensive experiments are conducted on a large-
scale real-world dataset, and the results show that
MTS achieves the state-of-the-art performance in
terms of both automatic and human evaluations.

1 Introduction

Timeline summarization aims at concisely summarizing the
evolution trajectory of input events along the timeline. Ex-
isting timeline summarization approaches such as [Li and Li,
2013; Ren et al., 2013] are all based on extraction methods.
However, these methods rely on human-engineered features
and are not as flexible as generative approaches. Herein, we
propose the abstractive timeline summarization task which
aims to concisely paraphrase the event information in the in-
put article. An example case is shown in Table 1, where the
article consists of events of a greatest entertainer in different
periods, and the summary correctly summarizes the important
events from the input article in order.

Abstractive summarization approaches including [See et
al., 2017; Hsu et al., 2018] have been proven to be useful

*Equal contribution. Ordering determined by dice rolling.
TContact Author.
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Events Michael Jackson (dubbed as “King of Pop”) was born on August

29, 1958 in Gary, Indiana.

In 1971, he released his first solo studio album “Got to Be
There”.

In late 1982, Jackson’s sixth album, “Thriller”, was released,
where videos “Beat It”, “Billie Jean” in it are credited with
breaking racial barriers and transforming the medium into an art
form and promotional tool

In March 1988, Jackson built a new home named Neverland
Ranch in California.

In 2000, Guinness World Records recognized him for supporting
39 charities, more than any other entertainer.

Bad summary Michael Jackson on August 29, 1958 in Gary, California. In
1971, his first album “Thriller” was released. In 2000, Guinness

‘World Records recognized him for supporting 39 charities.

Good summary Michael Jackson was born on August 29, 1958 in Gary, Indiana.
His sixth album “Thriller” was released in 1982. In 2000, Guin-

ness World Records recognized him for supporting 39 charities.

Table 1: Example of timeline summarization. The text in red demon-
strates time stamp, and text in blue demonstrates wrong event de-
scription. Events are split by lines.

recently thanks to the development of neural networks. How-
ever, unlike traditional document summarization, timeline
summarization dataset consists of a series of time-stamped
events, and it is crucial for timeline summarization model
to capture this time series information to better guide the
chronological generation process. Besides, as the example
in Table 1 shows, bad summary confuses the birthplace and
the residence, the first album and the best-selling album of the
celebrity. As we found in experiment, such infidelity problem
is a commonly-faced problem in summarization tasks.

To tackle above challenges, we come up with a memory-
based timeline summarization (MTS) model. Specifically,
we first use an event embedding module with selective read-
ing units to embed all events. Then, we propose a key-value
memory module storing time series information to guide the
summary generation process. Concretely speaking, the key
in memory module is the time position embedding that rep-
resents the time series information, and the value is the cor-
responding event representation. Keys together forms a time-
line and we use the time position of events on the timeline
to guide generation process. Finally, in each decoding step,
we introduce event-level attention and use it to determining
word-level attention so as to avoid confusion between events.

Overall, our contributions can be summarized as follows:

e We propose the generative timeline summarization task.
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e To tackle this task, we first come up with a time-event
memory modeling time series information to guide chrono-
logical generation process.

e In each decoding step, we incorporate event-level infor-
mation to assist in determining word-level attention so that
the generated summary can avoid confusion between events.

e We also release the first real-world large-scale timeline
summarization dataset'. Experimental results on the dataset
demonstrate the effectiveness of our framework.

2 Related Work

We detail related work on timeline summarization, abstrac-
tive summarization, and key-value memory network.

Timeline summarization. Timeline summarization task is
firstly proposed by [Allan et al., 2001] which extracts a sin-
gle sentence from each event within a news topic. Later,
a series of works [Yan et al., 2011b; Yan et al., 2011a;
Yan et al., 2012; Zhao et al., 2013] furthur investigate time-
line summarization task. There are also works focusing on
tweets summarization that are related to timeline summariza-
tion. For example, [Ren ef al., 2013] considered the task
of time-aware tweets summarization, based on a user’s his-
tory and collaborative social influences from “social circles”.
However, all above works are based on extractive methods,
which are not as flexible as abstractive approaches.

Abstractive summarization. Recently, with the emer-
gence of strong generative neural models for text [Bahdanau
et al., 2014], abstractive summarization is also becoming in-
creasingly popular [Nallapati er al., 2017; See et al., 2017].
Most recent work includes [Hsu et al., 2018], where they use
sentence-level attention to modulate the word-level attention
such that words in less attended sentences are less likely to
be generated. Their sentence-level attention is static during
the generation process, while in our model, the high-level
attention changes in each decode step depending on current
generated word which is more reasonable.

Key-value memory network Key-value memory proposed
by [Miller ez al., 2016] is a simplified version of Memory Net-
works [Weston et al., 2015] with better interpretability and
has been applied in document reading [Miller ef al., 2016],
question answering [Pritzel et al., 2017], language modeling
[Grave et al., 2017], and neural machine translation [Kaiser
et al., 2017]. In our work, we apply the key-value memory
network on timeline summarization task and fuses it into the
generation process.

3 Problem Formulation

MTS takes a list of events X = {z1,...,x7, } as inputs,
where T, is the number of events. Each event z; is a list of
words: x; = {w}, w}, ..., wk, }, where T7, is the word num-
ber of event z;. The goal of MTS is to generates a summary

Y = {41, ..., 9, } that is not only grammatically correct but
also consistent with the event information such as occurrence

"http://tiny.cc/Ifh56y
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place and time. Essentially, MTS tries to optimize the param-
eters to maximize the probability P(Y|X) = H;’Fil P(y:|X),
where Y = {y1, ..., yr, }is the ground truth answer.

4 Model

4.1 Overview

In this section, we introduce our memory-based timeline sum-
marization model in detail. The overview of MTS is shown in
Figure 1 and can be split into three modules: (1) Event Em-
bedding Module (See § 4.2): We employ a recurrent network
with Selective Reading Units (SRU) to learn representation
of each event. (2) Time-Event Memory (See § 4.3): we pro-
pose a time-event memory to establish a timeline, and use
the time position of events in the timeline to guide genera-
tion process. (3) Summary Generator (See § 4.4): Eventually,
we use an RNN-based decoder to generate the answer incor-
porating memory information, event-level information, and
word-level information.

4.2 Event Embedding Module

To begin with, we use an embedding matrix e to map one-
hot representation of each word in x; into a high-dimensional
vector space. We then employ a bi-directional recurrent neu-
ral network (Bi-RNN) to model the temporal interactions be-
tween words:

hi = LSTMene ([e(w}): p'], hi_y) o

where ““;” denotes the concatenation between vectors, h; de-
notes the hidden state of ¢-th word in Bi-RNN for event z;.
To capture the sequential information of events, we randomly
initialize a time position encoding vector p* of i-th event to
be included in the Bi-RNN input. Apart from gaining word
representation h!, we also need to gain event representation.
Simply taking the final state of Bi-RNN h%w as the repre-
sentation of the whole event cannot fully capture the feature
of the whole event. Thus, we establish a second RNN made
of SRU proposed in [Chen et al., 2018] to gain new event
representation a':

s; = SRU(hj, hfp,) )

a’ = spi 3)

w

Generally speaking, SRU replaces the update gate in original
GRU with a new gate taking each input h} and coarse event
representation hiTw into consideration. We omit the details
here due to limited space and readers can refer to [Chen er
al., 2018] for details.

So far, we gain the representation of i-th event a’ and ¢-th
word in a', i.e., h.

4.3 Time-Event Memory

As stated in Introduction, in timeline dataset, the generated
summary should capture the time series information to guide
the chronological generation process. Hence, we propose a
key-value memory module where keys together forms a time-
line, and this time series information is used to guide genera-
tion process as shown in Figure 2.
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Figure 1: Overview of MTS. We divide our model into three ingredients: (1) Event Embedding Module learns event representation; (2)
Time-Event Memory stores highlevel structral event information; (3) Summary Generator fuses the result from previous stages and generates

a summary.

The key in this memory is the time position encoding p*
introduced in § 4.2. In § 4.4, we will use this key as time
guidance to extract information from memory. As for the
value part, it stores event information of local aspect in lo-
cal value v; and global aspect in global value vs. v; simply
stores the event representation a’ as vzi, which means that v
only captures event information from current input article. On
the other hand, vs is responsible for learning the global char-
acteristics of events in different time position. Thus, we first
randomly initialize v} for i-th event in the same way as time
position encoding. Then we establish a gate v to combine av-
erage event representation in current batch a as a sub-global
information:

V' = o(W,[vh; a'] + be) 4
vh =viooh 4+ (1 =) - d )
where o is the sigmoid function and - is dot product. In this

way, the memory learns itself the global feature of each event
in different position and stores it in vs.

4.4 Summary Generator
To generate a consistent and informative summary, we pro-
pose an RNN-based decoder which incorporates outputs of
time-event memory module and event representation as illus-
trated in Figure 2.

Following [Li er al, 2018], we randomly initialize an
LSTM cell taking the concatenation of all event representa-
tions as input, and use the output as decoder initial state:

hy = LSTM (he, [a'; ...; a*]) ©)

where h. is a random variable. Next, following traditional at-
tention mechanism in [Bahdanau et al., 2015], we summarize
the input document into context vector ¢; 1’ dynamically, and
the ¢-th decoding step is calculated as:

by = LSTMae (hy_yslepaielyion)]) (D

where h; is the hidden state of ¢-th decoding step, and will
be modified by output from memory module in Equation 22.

Context vector céfl is calculated as:
a1y = W tanh (Wyhy_, + Wih}), @®)
avig = exp (1) /i (Sl e (ahii)) ©
e = X0 (S anishd). (10)

4941

Figure 2: An overview of the summary generator.

where we first use the decoder state h;_l to attend to each
states h; and resulting in the attention distribution oy ; ; €

RT*, shown in Equation 9. hé denotes the representation of
j-th word in event x;. Then we use the attention distribu-
tion ¢y ; ; to get the weighted sum of document states as the

’
context vector ¢,_;.

Context vector c;_l here only takes the word-level atten-
tion into consideration without considering event-level infor-
mation. However, in timeline summarization, it is important
for the model to be aware of which event it is currently de-
scribing, or it may confuse information from different events
and results in an unfaithful summary. Hence, we introduce an
event-level attention 3 similar to the calculation of word-level
attention and use it to adjust word-level attention:

B = WItanh (Wahy_y + Waa'), (1D
Bri=exp (8,) /Siexn (B1,),  (12)
Verig = Ot i (13)

The new context vector ¢; (replacing c; in Equation 10) is
now calculated as:

e =30 (S0 raahd) (14)
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Apart from using event-level attention to directly guide word-
level attention, we also use it to gain the weighted sum of
event representation to be concatenated in the projection layer
in Equation 23:

er =ty Brad (15)
So far, we have finished the calculation of context vector.
Next, we introduce how to incorporate the guidance from
memory. We first use hidden state h; to attend to each key
in memory. As stated in § 4.3, keys, i.e., time position em-
beddings, conform the timeline that represents the time series
information. Thus, we let the model take advantage of this se-
quential information, and calculate the relevance between po-
sition encoding and current state as time-attention 7(p, h;)

i ’ ’ i '1"6 ’ .
m(p*, hy) = exp(h,Wep')/ 3252, exp(h,Wep?) — (16)
Time-attention is then used to gain the weighted sum of local
value v; and global value v, in the memory:
my =300 m (', byl (17)
my = 30 (o', byl (18)
m}" and m2’ stores information from different level, thus
should play different roles in generator.
By a fusion gate, local value m}" is changed to m/ and will
be incorporated into the projection layer in Equation 23.
gtl :WO([htq;Ct;mtI ) 19)
mi =gt -m; (20)

’

We place the local value in the projection layer since m;
stores the detailed information rather than the global feature
in the input, thus should play an important part when gener-
ating each word.

As for the global value mf/, it stores the global feature of
event in different position, thus should influence the whole
generation process. Concretely, information from mf/ is fu-
sioned into the decoding state h;fl by a gate:

97 = Wal[hy_y;ci;m?]) Q1)

hey = by + (1= gf)-mf 22)
Finally, an output projection layer is applied to get the final
generating distribution P, over vocabulary:

P, = softmax (Wv [m; bl ey ed] + bv) (23)

We concatenate the output of decoder LSTM h;, the context
vector ¢;, and memory vector m; as the input of the output
projection layer.

In order to handle the out-of-vocabulary (OOV) problem,
we equip the pointer network [Gu et al., 2016; See et al.,
2017] with our decoder, which enables the decoder capable
of copying words from the source text. The design of the
pointer network is the same as the model used in [See ef al.,
20171, thus we omit this procedure due to limited space.

Our objective function is the negative log likelihood of the
target word 7, shown in Equation 24:

L=—3"1og Py(y) (24)
The gradient descent method is employed to update all pa-
rameters to minimize this loss function.
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5 Experimental Setup

5.1 Research Questions

We list four research questions that guide the experiments:
RQ1 (See § 6.1): What is the overall performance of MTS?
Does it outperform other baselines? RQ2 (See § 6.2): What
is the effect of each module in MTS? RQ3 (See § 6.3): Is the
time position embedding useful so that time-event memory
can correctly guide generation process? RQ4 (See § 6.4):
Can event-level attention correctly guide word-level attention
in decoding process?

5.2 Dataset

We collect a large-scale timeline dataset from the world’s
largest Chinese encyclopedia®. The character subsection of
this website consists of celebrities at all times and in all coun-
tries or lands. On each website page, there is a timeline sum-
mary for each character, and in the character experience sec-
tion of this page, each event is set as a paragraph with expla-
nation and details, which is selected as input article. We filter
out irrelevant content such as cited sources and figures. In
total, our training dataset amounts to 169,423 samples with
5,000 evaluation and 5,000 test samples. On average, there
are 352.22 words and 61.16 words in article and summary
respectively.

5.3 Comparison Methods

We first conduct ablation study to prove the effectiveness of
each module in MTS. Then, to evaluate the performance of
our proposed dataset and model, we compare it with the fol-
lowing baselines:

(1) Pointer-Gen: Sequence-to-sequence framework with
pointer mechanism proposed in [See er al., 2017]. (2) FT-
Sum: A summarization model proposed in [Cao ef al., 2018].
Since there is no open information extraction tool in Chinese,
we use POS tagging to extract entities and verbs to replace it.
(3) Unified: State-of-the-art generative summarization model
proposed in [Hsu ez al., 2018]. (4) LEAD3: a commonly used
baseline, which selects the first three sentence of document
as the summary. (5) TextRank: [Mihalcea and Tarau, 2004]
propose to build a graph, then add each sentence as a vertex
and use link to represent semantic similarity. (6) ITS: One of
state-of-the-art extractive summarization models proposed in
[Chen et al., 2018].

5.4 Evaluation Metrics

For evaluation metrics, we adopt ROUGE score in [Lin,
2004] which is widely applied for summarization evalua-
tion [Sun ef al., 2018; Chen et al., 2018]. The ROUGE met-
rics compare generated summary with the reference summary
by computing overlapping lexical units, including ROUGE-
1 (unigram), ROUGE-2 (bi-gram) and ROUGE-L (longest
common subsequence).

[Schluter, 2017] notes that only using the ROUGE metric
to evaluate summarization quality can be misleading. There-
fore, we also evaluate our model by human evaluation. Three
highly educated participants are asked to score 100 randomly

*https://baike.baidu.com/
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ROUGE-1 ROUGE-2 ROUGE-L
Pointer-Gen 36.61 21.35 34.51
FTSum 37.84 21.47 35.37
Unified 38.24 21.95 36.42
MTS 39.78 22.24 37.69
LEAD3 32.36 17.96 30.99
TextRank 32.27 15.34 30.86
ITS 34.03 18.20 31.24

Table 2: RQ1: ROUGE scores comparison between baselines.

sampled summaries generated by Unified and MTS. Statis-
tical significance of observed differences between the per-
formance of two runs are tested using a two-tailed paired t-
test and is denoted using 4 (or ¥) for strong significance for
a = 0.01.

5.5 Implementation Details

We implement our experiments in TensorFlow [Abadi et al.,
2016] on NVIDIA GTX 1080 Ti GPU. The word embedding
dimension is set to 128 and the number of hidden units is
256. For time-event memory, the dimension of key, global
value, and local value is 128, 512, and 256 respectively. We
initialize all of the parameters randomly using an uniform dis-
tribution in [-0.02, 0.02]. The batch size is set to 16, and the
event number is set to 8. We use Adagrad optimizer [Duchi
et al., 2010] as our optimizing algorithm and the learning rate
is 0.15. In decoding, we employ beam search with beam size
4 to generate more fluency summary sentence.

6 Experimental Results

6.1 Overall Performance

For research question RQ1, we examine the performance
of our model and baselines in terms of ROUGE as shown
in table 2. Firstly, generative models outperform extractive
models by a substantial margin, demonstrating the necessity
of generative timeline summarization approaches. Secondly,
the state-of-the-art model on CNN/DailyMail summarization
dataset, Unified, still gets the best performance among base-
line models on our timeline summarization dataset and out-
performs the Pointer-Gen by 4.45% in ROUGE-1, which
demonstrates the effectiveness of baselines. Finally, MTS
achieves better performance with 4.02%, 1.32% and 3.48%
increment over Unified and 8.65%, 4.16% and 9.21% over
Pointer-Gen in terms of ROUGE-1, ROUGE-2 and ROUGE-
L respectively, which proves the superiority of our model.
As for human evaluation, we ask three highly educated par-
ticipants to rank generated summaries in terms of fluency,
informativity, and fidelity. We pick FTSum and Unified as
baselines since their performance is relatively high compared
to other baselines. The rating score ranges from 1 to 3 and 3
is the best. The result is shown in Table 3, where MTS out-
performs Unified by 5.44%, 3.61% and 18.09% in terms of
fluency, informativity, and fidelity. It is worth noticing that
the infidelity problem is a serious problem existing in time-
line summarization, and MTS greatly alleviates such prob-
lem. We also conduct the paired student t-test between our
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Fluency Informativity  Fidelity
Faithful 243 2.29 2.36
Unified 2.57 2.49 2.21
MTS 2.714 2.584 2.61*

Table 3: RQ1: Human evaluation comparison with main baseline.

ROUGE-1 ROUGE-2 ROUGE-L
MTS w/o EA 38.75 2143 36.34
MTS w/o LV 37.95 21.01 35.76
MTS w/o GV 38.93 21.84 36.96
MTS 39.78 22.24 37.69

Table 4: RQ2: ROUGE scores of different ablation models.

model and Unified (row with shaded background), and result
demonstrates the significance of the above results. The kappa
statistics is 0.54 and 0.57 respectively, which indicates mod-
erate agreement between annotators>.

6.2 Ablation Study

Next, we turn to research question RQ2. We conduct abla-
tion tests on the usage of event-level attention, global and lo-
cal value in time-event memory, corresponding to MTS w/o
EA, MTS w/o LV, MTS w/o GV respectively. The ROUGE
score result is shown in Table 4. Performances of all ablation
models are worse than that of MTS in terms of all metrics,
which demonstrates the necessity of each module in MTS.
Concretely, local value and global value both make great con-
tribution to overall performance, demonstrating that time se-
ries information is indeed helpful in extracting information to
guide generation process. Besides, event-level attention also
plays an important part. Without guidance from this level,
word level attention has difficulty in focusing on input article
and that leads to a 3.71% drop in ROUGE-L.

6.3 Analysis of Time Position Embedding

We then address RQ3, the usefulness of time position embed-
ding is reflected by time-attention. We visualize the attention
map of two randomly sampled example as shown in Figure 3.
The figure above is the attention map in the first decoding
step, and the figure below is in the final decoding step. The
darker the color is, the higher the attention is. Due to limited
space, we omit the corresponding event descriptions. When
decoding starts, MTS learns to pay attention to the first two
events, which always consist of parallel information such as
the birthplace and birth date of the character. The attentions
on last several events are low since it does not need this infor-
mation in advance. When decoding ends, MTS focuses more
on the last several events. However, it also pays attention to
the first few events, since timeline summarization is a process
of information accumulation, and latter sentences should con-
sider previous information. Above example demonstrates the
effectiveness of time position embedding.

*[Landis and Koch, 1977] characterize kappa values < 0 as no
agreement, 0-0.20 as slight, 0.21-0.40 as fair, 0.41-0.60 as moderate,
0.61-0.80 as substantial, and 0.81-1 as almost perfect agreement.
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Figure 3: RQ3: Visualizations of time-attention. The figure above is
the attention map in the first decoding step, and the figure below is
in the final decoding step.

0 5 10

Figure 4: RQ4: Visualizations of two level attentions. The figure
above is the event-level attention and the three figures below are the
word-level attentions of first lead three events.

6.4 Analysis of Event-level Attention

We now turn to RQ4, whether event-level attention can guide
word-level attention. We first conduct a case study to visu-
alize the two level attentions, as shown in Figure 4. The fig-
ure above is the event-level attention, and three figures be-
low are word-level attention corresponding to the first three
events. We only show first 11 words in an event. The re-
sult shows that the third event is the most important event in
this decoding step, and weights of the words in this event are
also greater than other words on average. Above observation
demonstrates that event-level attention gives the correct guid-
ance for word-level attention.

Apart from the visualization, we also conduct quantitative
analysis to measure how greatly the word-level attention is
influenced by event-level information, which is reflected by
inconsistency loss. We adjust the inconsistency loss proposed
in [Hsu er al., 2018] into MTS, and the new consistency
loss at t-th decoding step is the negative log-likelihood of
the product of attention value of most attended three words
and their corresponding event-level attention. The intuition is
to verify whether the event-level attention is high too when
word-level attention is high. When training starts, the incon-
sistency loss is around 4.8, and when training ends, the loss
drops to 2.6. This means that event-level information greatly
influences the word-level attention and the model learns to
unify these two attentions. We did not directly add incon-
sistency loss to training because we found that made MTS
perform worse. Instead, we let the model learn by itself to
unify these two attentions.

We also show a case study in Table 5. We can observe that
baseline Unified confuses the description of events for twice.
It is the movie “The Flowers Of War” that wins Golden Globe
Award instead of the actor. While in summaries generated by
MTS, the important events and their corresponding descrip-
tions are all correctly included.
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20065, HRABIE (FF) « (BENELRZGFHE) I (5HAEAFX
R F) ZHNRITLA . TF2007FANBES7THEMRBIROUY T LERE
Ao AEREFHEREL. 2008 FHE LY (KE) . 20115, HEHRLH
HEHEY (ERTEZR) . A (BRTEZR) RRET-BLELY
BRRXLAKZERZBEFEIL, (BBR+TZR) \NBROBEE£E®
BRMERERAEIMER L 20126, Tt (PEEMKA) REREFE
e 20134, A wAE (I1%) FHMMAEL . (In 2006, Tong Dawei starred in
three popular TV shows: “Struggle”, “Youth We Can’t Place”, and “Days Related
to Youth”. He was also included in the main competition unit of the 57th Berlin
International Film Festival in 2007 to compete for the Best Actor Award. In 2008,
he starred in the movies “Red CIliff”. In 2011, he starred in the film “The Flowers
Of War” directed by Zhang Yimou, and won the most popular actor award in the
audience of the 12th Chinese Film and Media Award for his role in “The Flowers
Of War”. “The Flowers Of War” was awarded the 69th Golden Globe Award for
Best Foreign Language Film. He nominated “Best Supporting Actor” for a young
artist in “Chinese Partner” in 2012. In 2013, he decorated He Chunsheng in the TV
series “Men Di”. )

reference | 20075, XA BE AR (FF) (ANELZHEGFEH)
Fd ) (ER) . 20085, AFEEH (FE) . 20115 HH
¥ (art+=8) - 20135 ZF MR (I1%) - (In 2006,
Tong Dawei played in the TV drama “Struggle”, “Youth We Can’t
Place” and the movie “Apple”. In 2008, he acts in the film “Red
Cliff”. He starred in the film “The Flowers Of War’. In 2013, he
starred in TV play “Men Di”. ).

BF2007FANBEFSTRARER LY T ZRREL, AZR
BFER K- 20085, ALY (FE) - 20115 R LY

(Em+=R) RIFH B £EH LY LRE KL REIE
A o (He entered the main competition unit of the 57th Berlin In-
ternational Film Festival in 2007 for Best Actor Award. In 2008, he
appeared in the film “Red CIliff”. In 2011, he won the 69th Golden
Globe Award for Best Foreign Language Film in American Film and
Television for “The Flowers Of War”.

Unified

MTS BRF20065F & (&F) - (AMEZXZATFTE) # (5
FHEAKGEFT) . 2008F, AFEWY (FE) . 2011 F &
FaH (BBR+TEZ8) NBFE T -BEEeUHAERLLL
FHELEB FER XL, 2013F, AR LA (INFE) - (n
2006, Tong Dawei appeared in “Struggle”, “Youth We Can’t Place”,
and “Days Related to Youth”. In 2008, he appeared in the film “Red
Cliff”. In 2011, he starred in the film “The Flowers Of War” and won
the 12th Chinese Film and Media Award. In 2013, he shot the TV
drama “Men Di”. )

Table 5: Examples of the generated answers by MTS and Unified.

7 Conclusion and Future Work

In this paper, we propose a framework named MTS which
aims to generate summaries that concisely summarize the
evolution trajectory along the timeline. we first propose an
event embedding module with selective reading units to em-
bed all events. Then we propose a time-event memory mod-
ule storing structral evolutinary event information to guide
generation process. Finally, in each decoding step, we unify
the current sentence-level attention and word-level attention
together to avoid confusion between events. Our model out-
performs state-of-the-art methods in terms of ROUGE and
human evaluations by a large margin. In the near future, we
aim to propose a time-aware timeline summarization that can
summary the a specific time period of an whole article.
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